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1. Formal groups

1.1 Linearly topological rings

Before the introduction of formal groups, we need some preliminary knowledge of linear
topological rings. In the category of linear topological rings ( [L5] chap 4), we have an

excellent framework to deal with the completion.

Definition 1.1. A filtration of ideals J in R is a non-empty collection of ideals of R such
thatVI,Je€3,3l'ed , I'CcIndJ.

Lemma 1.2. Given a filtration of ideals J in R, then

(i) {a+1Ila € R,I €T} forms a topological basis in R, and we call it the topology induced
by J.
(i) The topology induced by I makes R become a topological Ting.
Proof: Omitted.
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Definition 1.3. A linearly topological ring R is a topological ring such that the topology
induced by the filtrtion of open ideals in R is the same as its topology.

Proposition 1.4. A topological ring induced by a filtration of ideals is a linearly topological

ring (note this is not a completely trivial statement).

Example 1.5. The linear topology induced by {I"|n > 1} for an ideal I € R is called I-adic
topology. Note if I =0, then this topology is discrete.

Let us denote LRings to be the category of linearly topological rings with continuous

ring maps.

Proposition 1.6. Let R, S and T be linearly topological rings, and let R — S and R — T
be continuous homomorphisms. We then give S®pgT the linear topology defined by the ideals
IRT+S®J, where I runs over open ideals in S and J runs over open ideals in T'. This is
easily seen to be the pushout of S and T under R in LRings. We conclude LRings has finite

colimits since the initial object (7 with the discrete topology) and all pushouts exist in it.



Proposition 1.7.

(i) Let {R; | i € J} be a family of objects in LRings, and write R =[], R;. We give this
ring the product topology, then it is the same as the linearly topology defined by the
ideals of the form [, J;, where J; is open in R; and J; = R; for almost all i. So it is
easy to check R =[], R; is the product in LRings.

(ii) Given following morphisms in LRings

f
B=—=C

g

then the subring a = {b € B|f(b) = g(b)} with the linear topology by filtration
{J =1nB|I open in B}
is the equalizer in LRings.
(7ii) So we conclude LRings has any limit.
Now we start to introduce the completion of linearly topological rings

Definition 1.8. Let R be a linearly topological ring. The completion of R is the ring
R= lim, ; R/I, where I runs over the open ideals in R. There is an evident map R — ﬁ,
and the composite R — R — R/ is surjective so we have R/I = R/I for some ideal I C R.
These ideals form a filtered system, so we can give R the linear topology for which they are

a base of neighbourhoods of zero.

It is easy to check that R=R. We say that R is complete, or that it is a formal ring, if
R=R. Thus R is always a formal ring. We write FRings for the category of formal rings.

Remark 1.9. [t is important to notice that the completion R from an I-adic topology is
not always the same as the IR-adic topology on R ! But it is the case when I is finitely
generated, see [13] Algebra 96.3.

Proposition 1.10.
(i) A linearly topological ring with the discrete topology is always complete.

(ii) Let R, S and T be in FRings, and let R — S and R — T be continuous homomorphisms,
then ST@R\T is easily seen to be the pushout of S and T under R in FLings. We conclude
FRings has finite colimits since the initial object ( Z with the discrete topology) and all

pushouts exist in it.



(iii) Any limit in FRings exists and could be created in LRings.

Definition 1.11. Let (R,m) be a local ring, we have a natural linear topology in R by the
m-adic topology. So we get a functor: LocalRings — LRings. In fact this functor is fully
faithful because of the following lemma, and base on that we will always treat local rings as

linearly topological rings.

Lemma 1.12. Let A, B € LRings. Suppose their linear topology is induced by filtrations 2
and B respectively. Let f: A — B be a ring homomorphism. Then f is continuous if and
only if VJ € B there exists I € A such that f(I) C J.

Proposition 1.13 ( [13] Algebra chap 96,97). Let (R,m) be a Noetherian local ring,
then

(i) (R,mR) is still Noetherian local, and @ = lim., m/m" ~ mR .

~

(ii) (R, m) is reqular if and only if (R, m) is
(iii) The topology on the completion R is the same as the W-adic topology on it, by .

Remark 1.14. (i) If a local ring (R, m) is not Noetherian, then (ﬁ, mfA{) is not necessarily
local.

(i) When we consider the opposite category FRings” we usually write an object to be Spf(R)
instead of R.

Definition 1.15. A formal group scheme F over a ring R is a group object in R-FRings®.
A formal group G of dim n over a ring R is a commutative formal group scheme such that

G = Spf R[[z1, ..., z,]].

1.2 Formal completion of pointed k-schemes

Definition 1.16. For a k-scheme X with a rational point e € X (k) we call it a pointed
k-scheme. The formal completion X of X “along” e is defined to be the complete linearly
topological ring Spf((@;), the completion of Ox . by m-adic topology. This induces a functor
Sch, E)—> k-FRings® where the left one is the category of pointed k-schemes.

Lemma 1.17. For a pointed k-scheme (X, e), if Spec(A) C X is an affine neighborhood of
e. Let m C A be the mazimal ideal corresponding to e, then by A/m™ = Ay,/m™ we have

X = 6;(\,6 >~ A where the right one is the m-adic completion of A.



Theorem 1.18. The functor (/—\) preserves finite limits. Particularly, it preserves finite
products and hence preserves (commutative) Monoid objects, (commutative) Group objects.

So it takes group k-schemes to formal group k-schemes.

Proof: Because any finite limit is a combination of pullbacks and terminal object, we
only need to show that (/—\) preserves pullbacks and terminal object. The terminal object is
easy to check. For the case of pullbacks, given a pullback diagram in Sch; (note that the

pullback in it is the same as the ordinary fiber product of schemes),

XxzY —Y

P

X — 7
we take neighbouhoods of basepoints Spec(R) C Z, Spec(A) C X, Spec(B) C Y, Spec(A®r
B) C X xzY. We write corresponding maximal ideals of basepoints ey, ey, exx,y to be
my, mg, m respectively. It is easy to see the basepoint exy,y corresponds to A ®r B —
k®rk = k® k, so actually m = my ®p B+ A ® my. By the lemma above and the

description of pushout of formal rings, the natural
08,5 = AonB
is isomorphic, then so is

—

OY,6®5ZEOX,e — Oxx,ve

It is easy to check following 2 useful propositions.

Proposition 1.19. (i) If k — F is a field extension, then for any (X,e) € Sch} we have
natural isomorphism 6)(\6(§>kF — O/X;,

(it) If k is a field of char(k) = p > 0 and (X,e) € Sch}, then 6;6 — 6;6 induced by
absolute Frobenius F' : X — X is absolute Frobenius on 6;67 and 6;76@),@”01,]6 — 6;,6

induced by relative Frobenius F : X — X®/%) is the formal relative Frobenius on 6;6.

By Cohen structure theorem, we will see that a smooth group k-scheme of dim n can

induce a formal group over k of dim n.

Theorem 1.20 (Cohen). Let (R,m) be a Noetherian complete local ring. Assume R is
reqular. If k is a field and k — R is a ring map inducing an isomorphism k — R/m, then

R is isomorphic as a k-algebra to a power series ring over k.
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Proof: We pick fi,...,fqs € m which map to a basis of m/m? and we consider the
continuous k-algebra map k [[x1,...,24]] — R sending z; to f;. As both source and target
are (r1,...,xq)-adically complete, this map is surjective by [13]Algebra 96.1. On the other
hand, it has to be injective because otherwise the dimension of R would be < d by [[13]Algebra
60.13.

0

Theorem 1.21. If G is a smooth group k-scheme of dim n, then Gisa formal group over
k of dim n.

Proof: We know “smooth” implies “regular”, so 6G\ . is a complete regular local ring of

dim n. Then by the theorem above we win.

2. Elliptic curves
Definition 2.1.

(i) If k is a field then by a variety over k we mean a k-scheme of finite type. A variety of

equidimension 1 (resp. 2, resp. n > 3) is called a curve(resp. surface, resp. n-fold).

(ii) We define an elliptic curve over a field k to be a pair (C,e) where C' is a smooth proper
and geometrically integral curve over k of genus 1 (i.e. dim,H (C,Oc) = 1) with

e € C(k) a rational point on C.

Recall that a k-scheme is said to be geometrically integral if for some algebraically
closed field K containing k the scheme X is irreducible and reduced. By [15] Algebra
42-47, if this holds for some algebraically closed over field K then X is integral for
every field F' containing k.

It is well-known that an elliptic curve has a natural group law(i.e. a group k-scheme

structure). In this chapter our goal is to prove that
L. Divgﬁ:(—) is representable by (C,A).

2. The natural transformations Divgﬁ:(—) — Pict, (=) — Pic?, /(=) are isomorphic for

an elliptic curve.



and then by Yoneda lemma we get a natural abelian group k-scheme structure on C' from

the abelian group structure of PicY, /k(—). These symbols will be explained below.

However the steps above are tricky. Let us begin with some technical preliminaries about

the relative Cartier effective divisor.

2.1 Relative effective Cartier divisors

Definition 2.2. Let S be an arbitrary scheme, and let X be an S-scheme. By a relative

effective Cartier divisor D on X/S we mean a closed subscheme D C X such that

(1) theideal sheaf (D) C Ox is an invertible Ox-module, i.e. it is a locally free O x-module
of rank 1.

(i) D is flat over S .
For the convenience, we abbreviate the “relative effective Cartier divisor” to be RECD.
Proposition 2.3.
(i) If D1, Dy are RECDs on X/S, then so is Dy + Ds.

(ii) Given the following pullback diagram of schemes,

X — 9

-

if D is a RECD on X/S, then D xx X' is a RECD on X'/S’.
Proof:

(i) It suffices to show D; + Dj is still flat over S. The problem is local on the X, so we can
assume X = Spec(B),S = Spec(A). This translates into the following algebra fact:
Let A — B be a ring map and hy, ho € B. Assume the h; are nonzerodivisors and that
B/h;B is flat over A. Then hhy is a nonzerodivisor and B/hihyB is flat over A. The

reason is that we have a short exact sequence

where the first arrow is given by multiplication by hs. Since the outer two are flat

modules over A, so is the middle one.



(ii) In the case, the flatness of D' = D x x X' over S’ automatically holds, so it suffices to
show D’ is an effective Cartier divisor on X’. The problem is local on X’, so we can
assume X = Spec(B), S = Spec(A), S’ = Spec(A’). We translate this as follows into
algebra. Let A — B be a ring map and h € B. Assume h is a nonzerodivisor and that
B/hB is flat over A. Then

0—B% B— B/hB—0

is a short exact sequence of A-modules with B/hB flat over A. Then this sequence

remains exact on tensoring over A with any module, in particular with any A-algebra
A

O

Given a We write Div}/S(T) to be the set of RECDs on X xg T/T. By the proposition
above this is a well-defined functor Schg — Sets (actually to CommutativeM onoids) for

any morphism of scheme X — S .

Lemma 2.4. Let R — S be a ring map. Let M be an S-module. Assume that R — S is
flat of finite presentation. If

(R — S) = Colim,\eA (RA — S)\)

is written as a directed colimit such that R, ®gr, Sx — S, are isomorphisms for p > X\ and
that Ry — Sy is of finite presentation, then for all sufficiently large \ the Sy is flat over Ry.
(See [15] Algebra 168.1.(3)).

Proposition 2.5. Let ¢ : X — S be a flat morphism which is locally of finite presentation.
Let D C X be a closed subscheme. If D — S is flat locally of finite presentation as well
and that all fibres Dy C X are effective Cartier divisors, then D is a RECD on X/S.

Proof: 1t suffices to show D is an effective Cartier divisor on X. The problem is local on

X, so we can assume X = Spec(A), S = Spec(R), D = Spec(A/I).

For any = q € Spec(A), we write s = ¢(z) = p. The assumption means that we
may assume [(A; ®r k(p)) is generated by a single element f which is a nonzerodivisor
in A; ®g k(p). By @, there exist R C R, A’, I’ such that R’ is noetherian, A" and A’/I" are
flat of finite presentation over R’ and that

A:A, KRpr R, A/]:A//I/ KR pr R, f GI/(A::I/ Rpr /i(p/)) :[C/I' KRR /i(p/)
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For the short exact sequence
0= Iy — Ay — (A/T)y =0
since the right two are flat R}, modules, so is the left one. We get
0— I D, k(p') — Ay ®r, k(p) — (A')T)y D, k(p') =0

The left one I;, ® R, K(p’) is generated by a single nonzerodivisor, then so is I;, by Nakayama
lemma. Since Spec(A’/I') — Spec(A’) is a closed immersion of Noetherian schemes, so
I, is generated by a single nonzerodivisor for a neighborhood D(g’) of q'. This implies

Spec(A/I) — Spec(A) is an effective divisor on D(g) where g is the image of ¢'.
U

Proposition 2.6. Let X — S be a smooth morphism of schemes of relative dimension 1.

Let D C X be a closed subscheme. Consider the following conditions
(i) D — S is finite locally free(i.e. finite+flat+locally of finite presentation).
(i) D is a relative effective Cartier divisor on X/S.

We always have the implication
(i) = (i)
If X — S is proper, then the converse is true.

Proof: Assume (i) holds. By @, we can reduce to the case S = Spec(k) with k a field.
Let € X be a closed point. As X is smooth of relative dimension 1 over k and we see that
Ox . is a regular local ring of dimension 1. Thus Ox, is a discrete valuation ring and hence
a PID. It follows that for any x € D, Op, is a quotient of O, by a nonzerodivisor because

dim Op, = 0. By the noetherianess of X, D is an effective Cartier divisor of X.
Assume X — S is proper and that (ii) holds, then D — S is proper as well. Since a proper
locally quasi-finite morphism is finite, so D — S a finite locally free morphism.

0

Proposition 2.7. Let f : X — S be a proper, smooth morphism of schemes of relative
dimension 1. Let Dy, Dy C X be closed subschemes finite locally free of degrees dy,ds over
S. Then D1+ Dy is finite locally free of degree dy + dy over S.



Proof: We know any Cartier divisor on a curve can be associated a degree
degy, D := Zmultx(l))[k(w) : k|
where = runs through the closed points (see [6] 7.3.1). We claim

degk(s)(DS) = dimy(s) (fuD)s RQos,, k(s)

for any RECD g : D — X on X/S, and then by the additional property of degy,,(—) we win.
The claim is right because we have the formula degy ) Ds = dimy H° (D5, Op,) (see [6]
7.3.5). Then by the finiteness of D over S, we have s*¢.Op = ¢.Op, (see [13] Coherent 5.1),
which implies dimg(o) (f.D)s ®os, k(s) = dimg H° (D5, Op,).

Remark 2.8. Actually, with the same hypothesis above, from

degk(s)(DS> = dimy(s)(fuD)s ®og , k(s)

we conclude that a relative effective Cartier divisor D on X /S is finite locally free of degrees

d if and only if Vs € S, degy,)(Ds) = d.

Let f : X — S be a proper, smooth morphism of schemes of relative dimension 1. Given
n > 0, we write Div;’/"S(T) to be the set of RECDs on X xg¢ T'/T such that corresponding
closed subschemes are finite locally free of degrees n over T', where T is a S-scheme. This is

a well-defined functor Schg — Sets by the previous statement.

Proposition 2.9. (i) Let f : X — S be a separated morphism, then any section s : S — X

of f is a closed immersion.

(ii) Let f: X — S be a proper, smooth morphism of schemes of relative dimension 1, then

Div;’/ls(—) is representable by (X, A).
Proof:

(i) By the pullback diagram it is easy to see.



(ii) First, by @ X B X xg X is a RECD on X/S of degree 1. Now we need to prove
Homg (T, X ) — Dz’v;’/ls(T) induced by A is an isomorphism for any S-scheme T
For the surjectivity, given D € Dz’v;’/{g(T) we see D — T is finite locally free of degree
1, which must be an isomorphism. So D is from a section T" — X xg T
For the injectivity, we need to check if two sections ey, ey : T'— X X g T are the same

closed subschemes of X xg T, then e; = ey. This is easy.

0

Proposition 2.10. Let f: X — S be a flat morphism between Noetherian schemes and let
D C X be a locally principle closed subscheme such that for each s € S, Dy, C X, is an
effective Cartier divisor. Then D — S is flat.

Proof: Let v € D C X with s = f(x). We need to show that Op, is a flat Og,— module.
By the local criterion for flatness, this is equivalent to the vanishing of Tor; Og s (k(s), Op ).

Consider the long exact sequence associated to the ideal sequence
0—=Zpy =+ Oxy— Opy —0

We have

0 = Tory** (k(s), Ox.a) — Tors® (k(s), Op) = Ipe ® k(s) = Oxa @ k(s) = Ox.

Since the first term is zero by flatness of X — S, the required vanishing would follow
from injectivity of the last map. To see this injectivity, let » € Ox, , be a regular element
cutting out Dy at z € X, and let f, € Ox, be a principle generated element of Z,. Then
r and f, generate the same ideal Ip,. in Ox, ® k(s), so r and f. are the same up to
a unit by the fact that r is a regular element. Now multiplication by f, induces a map
Ox .. ® k(s) =91 o xz ® k(s) which is injective with image Ip, ,. Thus we have an injective

map which factors as

where the first map is a surjection and so the required map is an injection.

11



2.2 The group structure on elliptic curves

Now we begin to prove there exist a natural (commutative) group scheme structure on an
elliptic curve. Actually, we will see this structure is unique in the next chapter about abelian

varieties.

Definition 2.11. Let f : X — S be a morphism of schemes, we define relative Picard group
Pic(X/S) = Pic(X)/ f*Pic(S). Itis easy to check Picx;s(T) = Pic(X xgT/T) is a functor
Schg — Abel.

We know for any proper integral curve C over a field k, there is natural degree map

Pic(C) — Z by following diagram.

K(C)* —— Diwv(C) —— Pic(C) —— 0

-
P
Degkl //
-

7~

Remark 2.12. So for a proper and geometrically integral curve C over k and n € 7Z, we
can define a subfunctor Picg,, (T') C Picos(T) to be the set of [L] € Pico(T) such that
Vt € T, Degyyy Ly = n. Note that if there exsits L € Pic(C) such that Degy, Lo = 1, then

Picg),. (=) and Picg,, (=) are naturally isomorphic by tensoring LY

Proposition 2.13. Let C be a smooth proper and geometrically integral curve over k. We

can define a natural transformation Divgﬁ(—) — Picg (=) by D — [L(D)] when n > 0

because of @

Theorem 2.14 (Grauert). Let f : X — Y be a proper morphism of locally noetherian

schemes and let F be a coherent Ox-module flat over Y. IfY is reduced and the function
Yy — dimk(y) Hi (Xy, .Fy>

is locally constant on'Y for some i, then R'f,F is locally free and the canonical homomor-
phism
(Rif*f)y ®Oy,y k(y) — Hi (Xyafy)

s an isomorphism for any y € Y.

Theorem 2.15 (Cohomology and Base Change). (see |3/ 111, 12.11)
Let f : X =Y be a proper morphism of locally noetherian schemes, and let F be a coherent

sheaf on X, flat over Y. Then:
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1. Let y be a point of Y, if the natural map
901@) : RZf*U:) ® k(y) — H (Xy, Fy)
is surjective, then it is an isomorphism.

2. Assume that for any y € Y, ©'(y) is surjective. Then the following conditions are
equivalent:
(a) For anyy € Y, o'~ 1(y) is surjective;
(b) R f.(F) is locally free of finite rank.

Theorem 2.16 (Main). Let (C,e) be an elliptic curve over a field k, then Dz’vg}lk(T) —
Picé/k(T) is naturally isomorphic for any reduced k-scheme of finite type T'.
(Actually this is true for any k-scheme T, but in the general case the proof is much harder.

Note it is enough to get the group k-scheme structure of C' if we can prove the case above.)

Proof: We write X to be the C' x;, T. For the surjectivity, given [M] € Picg,,(T) =
Pic'(X/T), by Riemann-Roch theorem we have

dimk(t) HO (Xt, Mt) =1

dimyy H' (Xy, My) = 0

Since p : X — T is a proper morphism, and M is flat over T', we can apply the theorem of
cohomology and base change . Looking first at R'p.(M), since the cohomology along
the fibres is 0 , the map ' () in is automatically surjective, hence an isomorphism, so
we conclude that R'p,(M) is 0. In particular, it is locally free, so we deduce from part (ii) of
the theorem that ¢°(¢) is also surjective. Therefore, it is an isomorphism, and since o' (#)

is always surjective, we see that p,(M) is locally free of rank 1 .

Now replacing M by M ® p*p.(M)" in Pic®(X/T), we may then assume that p,(M) =
Or. The section 1 € I'(T,Or) gives a section s € I'(X, M) (i.e a map of Ox-module

s:Ox — M). We claim s defines an effective Cartier divisor Z C X.

Taking the dual of s we get a morphism s¥ : MY — Oy, and then taking the image we
get a locally principle ideal sheaf of Ox and hence get a locally principle closed subscheme

7 C X. First, we claim Z — T is flat. By Or 5 P«(M) we have Oy = t'p M. Ve T,

13



consider the following diagram.

kt —> t*p*

b

p*t/*M

By the theorem of cohomology and base change , the vertical arrow is isomorphic and
so is the left arrow. That means Oy — p,t" M is a non-zero map, and hence so are
Ox, = M; and M} — Oyx,. Therefore Z, C X, is not isomorphic(i.e non-trivial closed
subscheme). But any nontrivial closed immersion to X; = C' Xy, k(t) is an effective Cartier
divisor, so Z — T is flat by . Then Z — X is a RECD on X/T and sV : MY — Oy
is injective by @ It is easy to see Z € Divgﬁc(T) and Z — [M]. (Note that we have not

used the reduceness of T' through proving the surjectivity.)

For the injectivity. Let Dy, Dy € Divg’/i(T) such that £(D;) = L(D3) ® p*(N) for some
N € Pic(T). For any t € T, pulling back to X; we have £(Dy;) = L(Dq). We claim
Dy, = Dy Since L(Dyy) = L(Dy;) we have Dy, = Dy + div(f) for some f € K(X;)*. By
the fact Lx(D)(X) = {f € K% (X)|div(f) + D > 0} U {0} when D is a Cartier divisor on
an integral scheme X, we conclude 1 € £(D1;)(X;) and 1 € L£(D2)(X;) when we consider
them as sub Ox,-modules of Kx, with 1 € K%, (X;) = K(X;)*. However, Riemann-Roch
theorem shows that dimyq) H° (Xi, £(Dyy)) = 1 = dimyyy H® (Xy, £(Ds:)), which implies
k(t) = Ox,(X:) = L(D1)(X:) = L(Da)(X:) € K(X;), and hence f € Ox,(X;), Diy = Doy.
So Dy, Dy are closed subschemes of X having the same underlying spaces. By @, both
Dy — T and Dy — T are isomorphic, hence Dq, Dy are reduced closed subschemes of X

having the same underlying spaces, which means Dy = Ds.

O

Corollary 2.17. Let (C,e) be an elliptic curve over a field k, then Pz’coc/k(—) is representable
by C with LIA)@7iL(—e) on C x; C, which induces a natural commutative group k-scheme

structure on C with the zero map e.

Proof: By , we conclude PicOC/k(—) is representable by C' with L(A) @ miL(—e) as
a functor

Reduced finite type Schy — Sets

Note the left category does not necessarily have any finite product, but it has terminal object
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Spec(k), and C xj C is reduced because C' is geometrically integral. So we can still get a

natural commutative group k-scheme structure from the representability.

3. Group schemes and algebraic groups

We have known that the elliptic curve is group k-scheme. Now we take some effort on the

property of group scheme over general base scheme.

3.1 Basic properties of group schemes

Definition 3.1. (i) Let S be a scheme. A group scheme over S, or an S-group scheme,
is an S-scheme 7 : G — S together with S-morphisms m : G x5 G — G (group law, or
multiplication), i : G — G (inverse), and e : S — G (identity section), such that the

following identities of morphisms hold:

mo(m xidg) =mo (idgxm):GxsG xsG— G
mo(exidg)=7j1: S xsG—G
mo (idg xe)=7:GxgS =G
and
eomr=mo (idg x i) oAg/s =mo (i xidg) 0o Ag/s : G — G,

where j1 : S xg G —= G and jo : G xg S — G are the canonical isomorphisms.

(i) A group scheme G over S is said to be commutative if, writing s : G XsG — G x5 G for

the isomorphism switching the two factors, we have the identitym = mos : GXxsG — G.

(iii) Let (w1 : Gy — S,mq,i1,e1) and (my : Go — S, ma, s, €2) be two group schemes over
S. A homomorphism of S-group schemes from Gy to Gy is a morphism of schemes
f: Gy — Gy over S such that fomy; =moo(f X f): Gy X G1 — Ga. (This condition
implies that foey =ey and foiy =iy0 f.)

Remark 3.2. In practice it will usually either be understood what m,i and e are, or it will be
unnecessary to make them explicit; in such case we will simply speak about “a group scheme
G over S 7 without further specification. (In fact, we already did so in parts (ii) and (iii) of
the definition.)
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If G is a group scheme over S and if S — S is a morphism of schemes, then the pull-back
G' := G xg 5" inherits the structure of an S'-group scheme. In particular, if s € S then the
fibre G5 := G x g Spec(k(s)) is a group scheme over the residue field k(s).

Given an S-group scheme G and an integer n, we define [n] = [n]g : G — G to be the
morphism which on sections - using multiplicative notation for the group law-is given by g +—
g". If n > 1 it factors as

A’é/s n m(n)

(n

where m\™ is the “iterated multiplication map”, given on sections by (g1,---yGn) = g1 Gn-

”

For commutative group schemes [n] is usually called “multiplication by n

Example 3.3. 1. The additive group. Let S be a base scheme. The additive group over S,
denoted G, s, corresponds to the functor which associates to an S-scheme T' the additive
group I' (T, Or). For simplicity, let us assume that S = Spec(R) is affine. Then G, s is
represented by the affine S-scheme A = Spec(R|[z]). The structure of a group scheme is

given, on rings, by the following homomorphisms:

2. The multiplicative group. This group scheme, denoted G,, s, represents the functor which
associates to an S-scheme T the multiplicative group T (T, Or)" of invertible elements of
[ (T,07). As a scheme, G,, = Spec (Og [z,x7']). The structure of a group scheme is
defined by the homomorphisms given by
r—=r@x  defining the multiplication;

1

T ax defining the inverse;

x +— 1 defining the identity element.

3. m-th Roots of unity. Given a positive integer n, we have an S-group scheme ji, s which
associates to an S-scheme T the subgroup of G,,(T') of elements whose order divides n.
The Og-algebra defining this group scheme is Og |z, 7'/ (x™ — 1) with the group law

given as in Example 2. Put differently, i, s is a closed subgroup scheme of G, .

4. p"-th Roots of zero. Let p be a prime number and suppose that char(S) = p. Consider the
closed subscheme ayn s C Gqg defined by the ideal (a7"); so oy s := Spec (Oslz]/ (27")).
As is not hard to verify, this is in fact a closed subgroup scheme of G, s. If S = Spec(k)
for a field k of characteristic p then geometrically oy, is just a “fat point” (a point
together with its (p" — 1) st infinitesimal neighbourhood); but as a group scheme it has
an interesting structure. If T is an S-scheme then ayn(T) = {f € T (T,07) | f7" =0},

with group structure given by addition.
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5. Constant group schemes. Let M be an arbitrary (abstract) group. Let Mg := S™M) | the
disjoint union of copies of S indexed by the set M. The group structure on M clearly
induces the structure of a group functor on Mg (multiplication of functions), so that Mg
becomes a group scheme. And it is easy to check that (Mg, G(S)) induces adjoint pairs
Grp = Grp(Schg) and AbGrp = AbGrp(Schg).

Proposition 3.4. (i) Let f:Y — X be a separated morphism of schemes. If s: X —Y

is a section of f then s is a closed immersion.
(ii) An S-group scheme G is separated if and only if the unit section e is a closed immersion.

Proof: (i) we can check following diagram is cartesian diagram, then by the separateness

it is done.

(ii) Suppose the unit section e is a closed immersion. By the following cartesian diagram we

win.

N

G ———

s
G xgG

—
mo(idg X1)

—
a

Q

Remark 3.5. Particularly, any group k-scheme is separated.
Now we introduce an important lemma about differentials on the group scheme.

Lemma 3.6. Let (G, m,e, i) be a group scheme over the scheme S. Denote f : G — S the

structure morphism. Then there exist canonical isomorphisms
Qays = e Qays
In particular, if S is the spectrum of a field, then Qgq/s is a free Og-module.
Proof: By Morphisms, Lemma 32.10 we have
Qaxsa/a = ™ Qs

where on the left hand side we view G Xg G as a scheme over GG using mo. Let 7 : G X G —

G xg G be the "shearing map” given by (g,h) — (m(g,h),h) on points. This map is an
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automorphism of G' x g G viewed as a scheme over GG via the projection m,. Combining these

two remarks we obtain an isomorphism
T'm Qa5 = T Qays
Since m; o 7 = m this can be rewritten as an isomorphism
m*Qg/s — WTQG/S

Pulling back this isomorphism by (e o f,idg) : G — G X G and using that mo(eo f,idg) =

idg and pryo (eo f,idg) = e o f we obtain an isomorphism

Qays — e Qays

as desired. If S is the spectrum of a field, then any Og-module on S is free and the final

statement follows.
O

Lemma 3.7 ( [13] Variety 25.2). Let k be a field. Let X be a scheme over k. Assume (1) X
is locally of finite type over k, (2) Qx i is locally free, (3) X is reduced, and (4) k is perfect.

Then the structure morphism X — Spec(k) is smooth.

Proof: Let x € X be a point. As X is locally Noetherian (see [L3]Morphisms, Lemma 15.6
there are finitely many irreducible components X7, ..., X, passing through z (see [13]Prop-
erties, Lemma 5.5 and [13]Topology, Lemma 9.2). Let n; € X; be the generic point. As X is
reduced we have Ox ,, = k(1;), see [L3]Algebra, Lemma 25.1. Moreover, x (7;) is a finitely
generated field extension of the perfect field k& hence separably generated over k (see [[L3]Alge-
bra, Section 42). It follows that Qx i, = Qu(y,/k is free of rank the transcendence degree of
% (n;) over k. By [13]Morphisms, Lemma 28.1 we conclude that dim,, (X;) = rank,, (Qx/).
Since z € X; N ...N X, we see that

rank,, (Qx/k) = rank,), (QX/k) = dim (X;) .

Therefore dim,(X) = rank, (Qx/), see [13]Algebra, Lemma 114.5. It follows that X —
Spec(k) is smooth at z for example by [13]Algebra, Lemma 140.3.

O

Definition 3.8. Let k be a field. An (locally) algebraic group is s a group scheme over k
which is of (locally) finite type over k.
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Corollary 3.9. Let G be a locally algebraic group over a field k. If G ®y K is reduced for
some perfect field K containing k, then G is smooth over k. In particular, any geometrically

reduced locally algebraic group over k is smooth.
We close this subsection with a useful proposition.

Proposition 3.10. Let G be a commutative group scheme which is finite locally free over
Spec(R) of order n for some ring R. Then n kills G, i.e., the multiplication by n map

[n] : G — G is the zero map.

Proof: See [14] 3.3.

3.2 Connected components of algebraic groups

Let G be a group scheme over a field k. By @, G is separated over k. The image of the
identity section is a single closed point e = eg.

Assume in addition that G is a locally algebraic group over k. Then the scheme G is
locally noetherian, hence locally connected. If we write G° for the connected component of
G containing e, it follows that GV is an open and closed subscheme of G. We call G° the

identity component of G.

Proposition 3.11. (i) The identity component G° of a locally algebraic group G over k is
geometrically connected. And for any field extension k C K, we have (G°), = (GK)O.
(ii) The identity component G° of a locally algebraic group G over k is an open and closed

subgroup k-scheme of G.

Proof: (i) More generally, we show that if X is a connected k-scheme, that has a rational
point x € X (k) then X is geometrically connected, see [13] Variety 7.14. For the second
statement, (G°), is a open and closed connected subscheme of (Gx)” containing e, so it
must be (Gg)".

(ii) By [13]Variety 7.4 we see G° x; G is connected open subscheme of G X, G containing
0% 0,50 G x; G® — G x;z G — G factors through G°. Similarly, G - G factors through

G°. So we conclude that G is an open and closed subgroup k-scheme of G.
O

If X is a topological space then 7y(X) denotes the set of connected components of X. The

purpose of the following section is to discuss a scheme-theoretic analogue of this for schemes
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that are of finite type over a field k. To avoid confusion we shall use the notation 7y in the
topological context and wy for the scheme-theoretic analogue.

If X/k is of finite type then wy(X) will be an étale k-scheme, and X — wo(X) is a
covariant functor. Furthermore, if G is a algebraic group over k, then wy(G) inherits a
natural structure of a group scheme; it is called the component group (scheme) of G.

Let us recall that an étale morphism of schemes f : X — Y is locally formal étale and
locally of finite presentation; see [13]Algebra 143.

Let k be a field. Choose a separable algebraic closure ks and write I'y := Gal (kg/k).
Then I'y is a pro-finite group, (see [12]) and Galois theory tells us that L — Gal (ks/L) gives
a bijection between the field extensions of k inside k; and the closed subgroups of I'y. Finite
extensions of k correspond to open subgroups of I'y. A reference is [[10], Sect. 4.1.

By a I'i-set we mean a set Y equipped with a continuous left action of I'y; the continuity
assumption here means that Stab(y) is an open subgroup of Iy for any y € Y.

If X is a connected étale scheme over k, then X is of the form X = Spec(L), with L a
finite separable field extension of k. An arbitrary étale k-scheme can be written as a disjoint

union of its connected components, and is therefore of the form X =| | _; Spec(L,), where

acl
I is some index set and where k& C L, is a finite separable extension of fields. Hence the
description of étale k-schemes is a matter of Galois theory. More precisely, if Et ;. denotes

the category of étale k-schemes there is an equivalence of categories
Et/; N I'p-sets .

write a I';-set Y as a union of orbits, say Y = | | o; (It - ¥a), let & C L, be the finite field
extension (inside ks ) corresponding to the open subgroup Stab (y,) C I', and associate to Y
the k-scheme L,¢; Spec (Ly). Up to isomorphism of k-schemes this does not depend on the
chosen base points of the ['y-orbits, and it gives a quasi-inverse to the functor X — X (k).
Note that X (k) is finite if and only if X is finite over k.

This equivalence of categories induces an equivalence between the corresponding cate-

gories of (commutative) group objects. This gives the following result.

Proposition 3.12. Let k C kg and Ty, = Gal (ks/k) be as above. Associating to an étale
(commutative) k-group scheme G the (commutative) group G (ks) with its natural I'y-action
gives an equivalence of categories

nite) ¢tale .
(finite) s (finite)(commutative)'-groups,
(commutative)k-group schemes

where by a T'y-group we mean an (abstract) group equipped with a continuous left action of

'y by group automorphisms.
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Now we turn to the main theorem of this subsection.

Lemma 3.13. (i) Let k be a field. Let X be a scheme over k. Let A be a k-algebra. Let

V C X4 be a quasi-compact open. Then there exists a finitely generated k subalgebra
A" C A and a quasi-compact open V' C X4 such that V = V}.

(ii) Let k/k be a (possibly infinite) Galois extension. Let X be a scheme over k. Let
T C X, have the following properties
(1) T is a closed subset of Xp,
(2) for every o € Gal(k/k) we have o(T) = T. Then there exists a closed subset T C X

whose inverse image in Xz is T

(i1i) Let X — Y be an open surjective map of spaces. If for anyy € Y, f~(y) is connected,
then mo(X) — mo(Y) is bijective.

Proof: (i) Let Uy,...,U, be finitely many affine opens of X such that V' C (JU, 4.

Say U; = Spec(R;). Since V is quasi-compact we can find finitely many f;; € R; ®
A,j=1,...,n;such that V- =;U,_, .. D (fij) where D (fi;) C U; 4 is the corresponding
standard open. (We do not claim that V N Uj 4 is the union of the D (f;;),7=1,...,n;.) It
is clear that we can find a finitely generated k-subalgebra A" C A such that f;; is the image
of some f/; € R; @ A'. Set V' = |JD (f};) which is a quasi-compact open of X 4. Denote
7 : X4 — Xy the canonical morphism. We have 7(V) € V' as w (D (f;;)) € D (f};). If
x € X, with w(z) € V/, then m(z) € D (f{;) for some 4, j and we see that 2 € D (f;;) as f;
maps to f;;. Thus we see that V = 7~ (V') as desired.
(ii) This lemma immediately reduces to the case where X = Spec(A) is affine. In this case,
let I C A®yk be the radical ideal corresponding to T. Assumption (2) implies that o(I) = T
for all o € Gal(k/k). Pick € I. There exists a finite Galois extension k'/k contained in k
such that z € A®y k. Set G = Gal (k'/k). Set

P(T) = [[(T - o(x)) € (A®y ) [T]

oeG

It is clear that P(T) is monic and is actually an element of (A ®; k)¢ [T] = A[T] (by basic
Galois theory). Moreover, if we write P(T) = T + a;T% ! + ... + ag the we see that
a; € I := AN I. By [13]Algebra, Lemma 38.5 we see that z is contained in the radical of
I (A®y k). Hence I is the radical of I (A ®; k) and setting T'= V/(I) is a solution.

(iii) Let T'C Y be a connected component. Note that T is closed. The lemma follows if we
show that f~!(T) is connected because any connected subset of X maps into a connected

component of Y. Suppose that f~H(T) = Z; U Zy with Z;, Z, closed. For any t € T we
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see that f~1({t}) = Z1 N f1({t}) U Zan f71({t}). By (1) we see f~1({t}) is connected we
conclude that either f~'({t}) € Z; or f~'({t}) C Z. In other words T" = T} U T, with
f~YT;) = Z;. By (2) we conclude that T; is closed in Y. Hence either Ty = @) or Tp, = () as

desired.

O

Proposition 3.14. (i) If X is a k-scheme of finite type, then my(Xy,) is a continuous
I')-set.

(i) If X is a finite étale k-scheme, then we have a natural isomorphism X (ks) — mo(Xy,)
of I'y-sets.

(iii) If X is a k-scheme of finite type, then mo(Xg,)/Tx — mo(X) is bijective.

(v) If X,Y are k-schemes of finite type, then mo(Xg, Xg, Yi.) — mo(Xg,) X mo(Ys,) is

bijective.

(v) If X is a k-scheme of finite type, Y is a finite étale k-scheme, then the image of the
injection Homy (X,Y) — Homy, (X, Yi.) consists of ks-morphisms such that following

diagram (of k-morphisms) is commutative for any g € T'.

Proof:

(i) Given a connected component Z of Xj_. By (i) of , taking A = ks and V = Z we
see that Stab(Z) contains an open subgroup and hence is open.
(ii) We know X (ky) = X, (ks). However, X}, is finite copies of Spec(k;), so it is clear that

Xk, (ks) = mo(Xy,). By the following diagram, this isomorphism preserves I'y-action.

Spec(ks) S N Xk,

Lo

Spec(ks) A N Xk,

(iii) The surjection is clear. For the injection, let Z be a connected component of X. If
p~Y(Z) contains 2 orbits under I'y-action, we get a contradiction by (ii) of .

(iv) Since X x; Y — Y is universally open, it is easy to check mo( Xy, Xx, Yi.) = m0(Xk,) X
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7o(Yk,) is bijective by (iii) of .

(v) It is easy to reduce to the affine case since Y is affine. Then using Galois decent we win.
O

Theorem 3.15. Let X be a scheme of finite type over a field k. Let Y be a finite étale
k-scheme.

(1) There is a finite étale k-scheme wy(X) and a morphism q : X — wo(X) over k such that
q 1s universal for k morphisms from X to a finite étale k-scheme. By this we mean we have
an adjoint pair

W : FT/k - fZET/k U

where U is the forgetful functor. And we have wgo U = Id.
(1) The morphism q is faithfully flat, and its fibres are precisely the connected components
of X.

I

Proof: (i) We can define wy(X) to be a (unique) finite étale k-scheme such that wy(X) (k)
7o(Xk,) as I'y-sets by (i) of . Let us consider the following diagram.

Homy,(X,Y) ——— Homr, gers(m0( X5, ), m0(Yz,)) —— Homy,(wo(X),Y)

/ /

Homks (Xk?s ? Yks ) ; Homsets (’/TO (st ) ’ To (Yks ))

By (v) of , we conclude two vertical arrows have the same image, so the first horizontal
arrow is bijective. Now we get that wy : FT,, = fiET, : U is an adjoint pair. By (ii) of
we have natural isomorphism wy o U(Y) 2 Y for any finite étale k-scheme Y.

(ii) We know X — wy(X) is induced by the identity map of 7o(Xy,) — mo(wo(X)k.). By
(iii) of we have 7y(X) — mo(wo(X)) is bijective. However wy(X) is a finite disjoint of
spectra of fields, the statement must hold.

O
Remark 3.16. By (iv) of , wo and U preserve finite products. So this adjoint pair can

extend to the corresponding (commutative) group objects.

3.3 FPPF quotients

Consider an action of an S-group scheme G on an S-scheme X. In general there is not a

simple procedure to construct a “good” quotient of X by G in the category Sch,g. Of course
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we have the notion of a categorical quotient, but this is only a “best possible approximation
in the given category”, and its definition gives no clues about whether there exists a categor-
ical quotient and, if so, how to describe it. Most approaches to the formation of quotients
follow the same pattern:

(a) replace the category Sch/g of S-schemes by some “bigger” category, in which the forma-
tion of quotients is easier;

(b) form the quotient Y := X/G in this bigger category;

(c) study under which assumptions the quotient Y is (representable by) a scheme.

Thus, for instance, in context of geometric quotients the “bigger” category is the category
of locally ringed spaces over S. (In LRS,g any colimit exists and is created in RS/g, see [3]
I.§1. 1.6.)

We shall use some notions that are explained in more detail in [L1]. Let S be a scheme.
We write (S)pppr for the big fppf site of S, i.e., the category Sch/g of S-schemes equipped
with the fppf topology. We write FPPF(S) for the category of sheaves on (S)pppr.

The fppf topology is coarser than the canonical topology; this means that for every S
scheme X the presheaf hx = Homg(—, X) is a sheaf on (S)gppr (see [11] 4.1.2). Via X — hx
we can identify Sch/g with a full subcategory of FPPF(S). We shall usually simply write X
for hx.

Denote by ShGr,s and ShAb,s the categories of sheaves of groups, respectively sheaves
of abelian groups, on (S)pppr. The category ShAb g is abelian. Unless specified otherwise,

we shall from now on view the category of S-group schemes as a full subcategory of ShGrg.

Remark 3.17. (i) We may meet the set-theoretic problems since ShGr, g and ShAb,g are
not necessarily locally small categories, but in our context there will be no problem if

we use the framework of Grothendieck universe.

(i) Not all presheaves on any cite can be sheafificated, for ezample, there exists a presheaf
on the fpqc site which admits no fpqc sheafification, see [16]. However any presheaf on
the fppf site admits a fppf sheafification since any scheme X has a small basis of fppf
covering: taking all affine fppf coverings of all affine open subschemes of X.

Definition 3.18. (i) Let G be an S-group scheme acting, by p : G xs X — X, on an
S-scheme X. We write (X/G)pypr, or simply X/G, for the fppf sheaf associated to the
presheaf

T— X(T)/G(T).
If X/G is representable by a scheme Y then we refer to' Y (or to the quotient morphism
q: X —Y) as the fppf quotient of X by G.
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We often say that “an fppf quotient exists” if (X/G)gpt is representable by a scheme.
Note that the sheaf X /G is a categorical quotient of X by G in FPPF(S), so we are indeed
forming the quotient in a “bigger” category. Note further that if (X /G )gppt is representable by

a schemeY then by the Yoneda lemma we have a quotient morphism of schemes q: X — Y.

(ii) Given an action p as in (i), we define the “graph morphism”
U=U,:=(p,pry) : G xg X — X xgX;

on points this is given by (g,z) — (g - x,x). The action p is said to be free if ¥ is a

monomorphism of schemes.

As we are mainly interested in the formation of quotients of a group scheme by a subgroup
scheme, we shall mostly restrict our discussion of fppf quotients to the case that the action

is free.

Remark 3.19. The formation of fppf quotients is compatible with base change. To explain
this in more detail, suppose j : S — S is a morphism of schemes. Then j gives rise to an
inverse image functor j* : FPPF(S) — FPPF (S") which preserves colimits. Concretely, if
f:T — S"is an S'-scheme then jo f : T — S is an S-scheme, and if F' is an fppf sheaf on
S then we have j*F(f : T — S') = F(jof:T — S). In particular, on representable sheaves
j* is simply given by base-change: j*X = X xgS’. Writing X' = X x5S and G' = G x5’
we conclude that j*(X/G) = (X'/G') as sheaves on (S") pppp - Hence if ¢ : X =Y is an
fopf quotient over S then Y’ :=Y xg.5" is an fppf quotient of X" by G'. Put differently: An

fppf quotient, if it exists, is automatically a universal fppf quotient.

Proposition 3.20. (i) Let G be an S-group scheme acting freely on an S-scheme X . Suppose
the fopf sheaf (X/G)gppt is representable by a scheme Y. Write g : X =Y for the canonical
morphism. Then the morphism ¥V : G xg X — X Xy X 1is an isomorphism. This gives a

commutative diagram with cartesian squares

GxgX 5 X xy X 25 X

!

X=——or—X

(ii) If furthermore G — S is an fppf covering, then q : X — Y is an fppf covering.

Proof: (i) Since the action is free, we see that the image of the injection hgxhx — hx xhx

is exactly the equivalent relation. By calculation of sheafification, ¥ : hg X hx — hx Xp, hx
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is an isomorphism of fppf sheaves. By the Yoneda lemma, ¥ is then also an isomorphism of
schemes.
(ii)Since hx — hy is an epimorphism between fppf sheaves, i.e. there exists an fppf covering
T — Y which admits a lifting to X. Let W =Y. Let W — Y be the identity morphism.
We find

Wr xp X = Wr Xxpm (Xr X0 X1) Z Wr Xxpm (Xo X0 X1) 2 Wr Xxpm (G Xg X)r

as Wr-schemes, so W xy X — W is an fppf covering by fppf descent theory. That is exactly

what we want.
O

Definition 3.21. Let P be a subcategory of schemes containing all isomorphisms. Let
T € {fpqc, fppf, smooth, étale, Zariski}. We say P is T local on the base, or T local on the
target, or local on the base for the T-topology if following conditions hold.

(1) P is stable under base change;

(ii) For any T-covering {Y; — Y'},.; and any morphism of schemes f : X — Y we have
feEP & eachY; xy X - Y, €P.

Remark 3.22. Many properties that play a role in algebraic geometry are fppf local on
the target. More precisely, it follows from the results in [13] Decent, that this holds for the
property P of a morphism of schemes of being quasi-compact, surjective, flat, (locally) of finite
type, locally of finite presentation, smooth, étale, universally closed, separated, universally
open, proper, universally injective, isomorphism, affine, integral, finite, finite locally free of

degree r(r > 0). For more details, see |13] Decent.

Corollary 3.23. Let P be a property of morphisms of schemes which is local on the target
for the fppf topology. Let G be an fppf S-group scheme. If q: X —'Y is an fppf quotient of

X under the free action of an S-group scheme G, then
T:G—=>SeEP=m:Gxs X > XePsqg: X>YeP

where moreover the first implication is an equivalence if X — S is an fppf covering.

Proof: Clear, as ¢ : X — Y is an fppf covering and G xg X — X xy X.
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In the applications we shall see that this is a most useful result. After all, it tells us that an
fppf quotient morphism ¢ : X — Y inherits many properties from the structural morphism
m:G—S.

Now we turn to the main theorem of this subsection that the category C} of commutative

algebraic groups over a field k is an abelian category.

Lemma 3.24. If f : G; — G5 is a monomorphism in Cy, then the fppf quotient sheaf Go /G
is representable by a k-scheme, for the details of this see [§] SGA 3, Exp V1x, Thm. 3.2.
Since “locally of finite type” is fppf-local on the source (see [13] Decent 27), G2/Gy is of
finite type over k.

Theorem 3.25. Cy, is an abelian category.

Proof: We know that ShAb is a (big) abelian category, and that h : Cj, — ShAb is a
fully faithful embedding. So it suffices to show that Cj has kernels and cokernels and that
h preserves kernels and cokernels. Clearly C} is an additive subcategory, and h preserves
kernels.

For cokernel, Let f : Gi — G2 be a morphism in Cj. In the category ShAb,, we can form
the fppf quotient ¢; : Gy — Gy/Ker(f) by the lemma. Let G; := G;/Ker(f), and let
f : Gy = G5 be the homomorphism induced by f. Note that f is a monomorphism since
the corresponding morphism of fppf sheaves is a monomorphism. But the natural map of
sheaves h(Gs)/h(G1) — h(G2)/h(G}) is an isomorphism, so it follows that the fppf quotient
G2/G1 exists again by the lemma. In particular, we conclude that C}, has cokernels which

are all preserved by h.
O

Remark 3.26. (i) In the construction of kernels and cokernels, we can easily see that
monomorphisms in Cy are exactly closed subgroup k-schemes, and that epimorhisms in Cy,
are exactly fppf homomorphisms.

(i) If k — F is a field extension, then C) — Cr is an exact functor by the description of

(mono)epimorphisms in Cy.

Definition 3.27. Let G be a finite group scheme over a field k. We say that G is
- étale if the structural morphism G — Spec(k) is étale;

- local if G is connected.

Lemma 3.28. Let G| and Gy be finite group schemes over a field k, with G étale and Go

local. Then the only homomorphisms G1 — Go and Gy — G are the trivial ones.
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Proof: Without loss of generality we may assume that & = k. Then G2, vea C Gy is a
connected étale subgroup scheme; hence G, ;ea = Spec(k). Now note that any homomor-
phism G; — G, factors through Gg,eq . Similarly, any homomorphism Gy — G factors
through GY = Spec(k).

Now we introduce local-étale sequence of a commutative algebraic group over a field k.

Theorem 3.29. Let G € C). Then we have an exact sequence in C,.
0— G — G — wy(G) — 0

If k is perfect and G is finite over k then this sequence naturally splits, i.e. we have a

homomorphic section G <+ wo(G) and natural G = G° x wy(G).

Proof: Consider the homomorphism ¢ : G — wy(G) as in . As shown there, ¢ is
faithfully flat, and the kernel of ¢ is precisely the identity component G°. Hence we have
the exact sequence above.

Let us now assume that k is perfect and G is finite. Then G,oq C G is a closed subgroup
scheme which by @ is étale over k. We claim that the composition Greq — G — wo(G) is
an isomorphism. To see this we may assume that k = k. But then G, as a scheme, is a finite
disjoint union of copies of G°. If there are n components then G.q and wy(G) are both
isomorphic to the disjoint union of n copies of Spec(k), and it is clear that Gieq — wo(G) is

an isomorphism of group schemes. The inverse of this isomorphism gives a natural splitting.
O

Proposition 3.30. If 0 — G; — G2 — G3 — 0 is an exact sequence of finite k-
schemes in C}, then rank (Gy) = rank (G) - rank (Gs).

Proof: Immediate from the fact that “finite locally free of degree r(r > 0)” is local on the

target for the fppf topology, as this implies that Go — G3 is finite locally free of degree

rank (G1) by .

4. Abelian varieties

The elliptic curve is the first example of the abelian variety. In the view of the stable

homotopy theory the abelian variety is less important than the elliptic curve because it does
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not seem that the higher dimensional formal group could be realized in the stable homotopy
theory. But before we deal with the elliptic curve it is profitable to know some powerful

theories about the abelian variety. The main reference of this chapter is [l 2].

Definition 4.1. An abelian variety (X, m,i,e) is a group scheme over k which is also a

proper, geometrically integral variety over k.

Remark 4.2. Note that we have not required the group scheme is commutative in the defini-
tion of the abelian variety, because in the following content we will see that it automatically
holds. And we will see some elegant statements in the abelian variety due to a property
usually called by “rigidity”, which means the trivialness in the fiber can imply the trivialness

in the whole scheme.

4.1 Basic properties of abelian varieties

We have seen any elliptic curve over k is an abelian variety of dim 1 in the chapter 2. Now

we claim that the converse is true too.
Proposition 4.3. Any abelian variety C' of dim 1 over k is an elliptic curve.

Proof: 1t suffices to show that ¢(C) = 1. By @ C is smooth, we have we = Q¢yy. Using
@ we conclude that ¢y, is a finite direct sum of O¢, which must have Q¢ = O¢ because
Qcyy, is invertible. Finally, we get g = [((K¢) = dimy H® (C, Q¢ ) = dimy, H° (C,O¢) = 1.

O
Now, we introduce “Rigidity lemma” mentioned at the beginning of this chapter.

Lemma 4.4. Let k be a field, let X be a proper geometrically integral k-scheme and let Y be
an affine k-scheme. Then every morphism X — Y of k-schemes factors through a k-valued
point of Y .

Proof: By the fact I'(X, Ox) = k it is easy to see.
O

Lemma 4.5 (Rigidity lemma [4]). Let k be a field, and let X be a geometrically reduced,
geometrically connected proper k-scheme such that X (k) # 0. Let Y be an integral k-scheme,
and let Z be a separated k-scheme. Let f : X XY — Z be a morphism such that for some
y € Y(k), fixxqy factors through a k-valued point z € Z(k). Then f factors through the
projection py : X XY =Y.
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Proof:

Let x € X(k), viewed as a morphism Spec k& — X, and consider the morphisms f and
g := fo(rxidy)opy from X XY to Z. It suffices to show that f = g or, equivalently,
that the subscheme Eq(f, g) of X x Y, where these morphisms coincide, is equal to X x Y.
Let U C Z be an open affine neighborhood of z. Because X is proper over k, the projection
p2: X xY — Y is closed. By hypothesis p; '(y) € f~*(U), and therefore there exists an open
neighborhood V of y in Y such that p, * (V) C f~1(U) (by closed map). Let 3’ € V. Then the
restriction of f to X X, Speck (y') C X x Y yields a morphism X ®j k () — U ®g & (y') of
K (y')-schemes, which factors through a x (y')-valued point by Q This shows that Eq(f, g)
contains all points of X x V', and hence contains the dense open subset X x V. Moreover

Eq(f, g) is closed because Z is separated. Because X X Y is reduced, Eq(f,g) = X x Y.
[

Theorem 4.6. Let X andY be abelian varieties and let f : X — Y be a k-morphism. Then
[ is the composition f =ty o h of a homomorphism h : X —'Y and a translation ty..,)

over f(ex) onY.

Proof: Set y := iy (f (ex)), and define h := ¢, o f. By construction we have h(ex) = ey.
Consider the composite morphism

homx )X (iyomyo(hxh
—

g:z(XxX( ”YxY%Y).

(To understand what this morphism does: if we use the additive notation for the group
structures on X and Y then ¢ is given on points by g (z,2') = h(z +2') — h(2') — h(x).)
We have

g({ex} x X) =g (X x {ex}) = {ev}
By the Rigidity Lemma this implies that g factors both through the first and through the
second projection X x X — X, hence g equals the constant map with value ey. This means

that homy = my o (h X h), i.e., h is a homomorphism.
l

Corollary 4.7. (i) If X is a geometrically integral proper variety over a field k and e €
X (k) then there is at most one structure of an abelian variety on X for which e is the

identity element.

(i7) If (X,m,i,e) is an abelian variety then the group structure on X is commutative, i.e.,
moT=m:X XX — X, where 7: X x X — X x X is the morphism switching the

two factors. In particular, for every k-scheme T the group X(T) is abelian.
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Proof:

(i) If (X,m,i,e) and (X,n,j,e) are abelian varieties then m and n are equal when re-
stricted to X x {e} and {e} x X. Applying (1.12) to mo (m,ion) : X x X — X,
which is constant when restricted to X x {e} and {e} x X, we get m = n. This readily

implies that ¢ = j too because the inverse map is unique if it exists.

(ii) By the previous proposition, the map ¢ : X — X is a homomorphism. This is equivalent

that the group structure is abelian.

O

Remark 4.8. From now on we shall mostly use the additive notation for abelian varieties,
writing x+y for m(x,y), writing —x fori(x), and 0 for e. Since abelian varieties are abelian
as group varieties, we no longer have to distinguish between left and right translations. Also
we can add homomorphisms: given two homomorphisms of abelian varieties f,g : X — Y,

we define f + g to be the composition
f+g=myo(f,g): X —Y XY —Y,

and we set —f := foix =iy o f. This makes the set Homay(X,Y') of homomorphisms of
X to'Y into an abelian group.

As we have seen, also the set Homge, /x(X,Y) = Y(X) of X-valued points of Y has a
natural structure of an abelian group. By Theorem B, Homay (X, Y) is just the subgroup
of Homge/x(X,Y) consisting of those morphisms f : X — Y such that f(0x) = Oy, and
Homgen/i(X,Y) = Homay(X,Y) x Y(k) as groups. We shall adopt the convention that
Hom(X,Y) stands for Homay(X,Y'). If there is a risk of confusion we shall indicate what
we mean by a subscript “AV” or “Sch/k”.

4.2 Line bundles on abelian varieties

Now we claim another result that can be thought of as a rigidity property of line bundles in

abelian varieties, which is powerful in the theory of abelian varieties.

Lemma 4.9. A line bundle M on a proper geometrically integral variety X over a field k

is trivial iff we have H°(X, M) # 0 and H°(X, M~1) # 0.

Proof: One direction is easy because H*(X, M) = H(X, M™1) = k # 0 if M is trivial. For
another direction, by integrality, we can choose a Cartier divisor D such that £(D) = M.
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Then the hypothesis implies there are fi, fo € K(X)* such that (following > 0 means
effective)

div(f1)+D >0, div(fs) —D >0

Taking the sum we get div(f1 fo) > 0, which implies f; fo € O% = k*. So div(f;)+div(fs) = 0.
We write f = fi, then we have both div(f) + D > 0 and —div(f) — D > 0. Hence
div(f) + D =0 and £(D) is trivial.

0

Lemma 4.10. Given a morphism of schemes X — Y. Assume Oy — f.Ox. Then the
functor N — f*N is fully faithful from the category C of locally free sheaves of finite rank
on'Y to that on X. The essential image is formed by the sheaves M on X such that

(i) the image f.M is in C and
(ii) the natural map f*f.M — M is an isomorphism.

Proof:

For any N in C, there is a string of three natural isomorphisms

The first isomorphism arises by tensor product with the comorphism of f; this comorphism
is an isomorphism by hypothesis. The second isomorphism arises from the identification
Ox = f*Oy. The third arises from the projection formula.

For any N’ in C, also Hom (N, N”) is in C. Hence, it yields an isomorphism
Hom (N, N') —= fof* Hom (N, N').
Now, since N and N’ are locally free of finite rank, the natural map
f*Hom (N, N") — Hom (f*N, f*N)
is an isomorphism locally, so globally. Hence there is an isomorphism of groups
Hom (N, N") — Hom (f*N, f*N").

In other words, N — f*N is fully-faithful. Finally, the essential image consists of the sheaves
M that are isomorphic to those of the form f*N for some A in C. Given such an M and N/,
there is an isomorphism f,M ~ N owing to (2.7.1). Hence f,M is in C, and f*f, M — M
is an isomorphism locally, so globally; thus (i) and (ii) hold. Conversely, if (i) and (ii) hold,

then M is, by definition, in the essential image.
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Lemma 4.11. Suppose f : X — Y is a proper flat morphism of locally Noetherian schemes,
whose fibers satisfy dimy,) H° (Xy, OXy) = 1. (Important remark: this is satisfied if f has
geometrically connected and geometrically reduced fibers) Then f satisfies that Oy — f.Ox

15 1somorphic.
Proof: Consider
¢y N
Oy @ k(y) — (f.0x) @ k(y) — H° (X,,Ox,) = k(y)

The composition is surjective, hence gzﬁ[y) is surjective, hence it is an isomorphism by the
Cohomology and Base Change Theorem . Then by the Cohomology and Base Change
Theorem (ii), f+Ox is locally free, thus of rank 1 . Use Nakayama’s Lemma to show
that a map of invertible sheaves Oy — f,Ox that is an isomorphism on fibers is necessarily

an isomorphism of sheaves.
O

Proposition 4.12. Let f : X — Y be a morphism, L € Pic(X). Let P(L, f) be a property
on the pair (L,f). We call Z C Y a P-mazximal closed subscheme of (L, f) if for any
Y -scheme T such that P(Lr, fr) holds T can factor through Z. (Note if Z exists then it is

unique.)

Assume a pair (L, f) satisfies that

(i) ForanyY -schemeT, if P(Ly, fr) holds, then for any open U C T we have P(Ly|r-1wy, fr|f-1w))
holds.

(ii) For anyY -scheme T, if there exists an open covering {Uy} of T such that P(Lrt|a, fT|a)
holds for all o, then P(Lr, fr) holds.

Then

(i) Given a Y-scheme T, if Z is P-maximal closed subscheme of (Lr, fr), then so is
Zly Cc U for any open U C T.

(i) Given a'Y -scheme T, suppose there ezists an open covering {U,} of T and a collection
{Z4} such that for any o, Z,, C U, is a P-maximal closed subscheme. Then P-mazimal

closed subscheme Z of (L, fr) exists and Z satisfies Z N U, = Z,,.
Proof: 1t is easy to check.
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Proposition 4.13. Suppose f : X — Y is a proper flat morphism of locally Noetherian
schemes, whose fibers are geometrically integral, L € Pic(X), then there exists a unique
closed subscheme structure on Z such that Ly is pulled back from Z, and Z is universal with

this property amongst all Y -schemes.

Proof: We define P(L, f) to be “L € f*Pic(Y)”. By the two previous lemmas, we can
show that P(L, f) is equivalent to “f.L is invertible and f*f.L — L is isomorphic” for
(L, f) here. So it is easy to see P satisfies the two assumptions of . Hence we can
assume Y = Spec(A). For more details, see [9] Chap 10.

0

Theorem 4.14 (The Seesaw Theorem). Let f : X — S be a proper flat morphism between
locally Noetherian schemes with geometrically integral fibres. If L € Pic(X) is a line bundle
on X, then

(i) the set Z :={s € S : Ly is trivial } is closed in S;

(i1) Ly, is pulled back from Zieq, where Zyeq denotes the unique reduced subscheme structure

on Z;

(iii) The underlying space of the mazimal closed subscheme Z(L) such that Lz is pulled
back from Z (L) is equal to Z.

Proof: For (i), as the fibres of f are geometrically integral, Lemma @ implies that Z can

be rewritten as
Z={seS H (X,,L,)#0}N{seS:H"(X,,L;") #0}.

Both sets above are closed by the semicontinuity theorem (indeed, they are both the locus
where the global sections of a certain line bundle has dimension > 1 ), hence Z is closed.
For (ii), replace S with Z.,q in order to assume that L, is trivial for all s € S and that S
is reduced. If M = f,L, then we claim that M is a line bundle on S. This problem is local
on S, so we may assume that S = Spec(A). By , it follows that M is a vector bundle
and M ®4 k(s) ~ H (X, L,) = H (X,, Ox,) = k(s), where the final equality follows from
the hypothesis that the map f is proper with geometrically integral fibres. Therefore, M is

of rank 1, as required.
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Moreover, we claim that the counit map f*(M) = f*f.L — L is an isomorphism. The
problem is local on S, so assume S = Spec(A). If one restricts the counit map to the fibre
above s € S, then one gets an isomorphism because L, is trivial and M® 4x(s) = H® (X, L)
is an isomorphism. Thus, f*(M) — L is an isomorphism on each fibre X, and it is therefore
an isomorphism by Nakayama’s lemma.

(iii) is directly from (ii) and the maximal property of Z(L).
O

Remark 4.15. What does the Seesaw Theorem have to do with seesaws? Consider the main
case of interest: when X = S X T for two proper geometrically integral varieties S and T
over a field k, and f : X — S is the first projection. Theorem 6.3 then implies that if Ligyxr
is trivial for all s € S, then L is pulled back from S.

Theorem 4.16 (Rigidity of line bundles). Let X and Y be proper and geometrically integral
varieties over k and let Z be a connected, locally noetherian k-scheme. Consider points
r € X(k)andy € Y(k), and let z € Z(k) be a point of Z. If L is a line bundle on X XY x Z
whose restriction to {x} XY x Z, to X x {y} x Z and to X XY x {z} is trivial then L is

trivial.

Proof: We follow the proof given by Mumford in [9] §10. We view L as a family of line
bundles on X x Y parametrized by Z. Let Z’ be the maximal closed subscheme of Z over
which L is trivial, as discussed above. We have z € Z’. We shall show that Z’ = Z by
showing that Z’ is an open subscheme and using the connectedness of Z. Let ¢ be a point of
Z'. Write m for the maximal ideal of the local ring Oz and I C Oy, for the ideal defining
(the germ of) Z’. We have to show that I = (0). Suppose not. By Krull’s Theorem (here we
use that Z is locally noetherian) we have N, m"” = (0), hence there exists a positive integer

n such that I c m", I ¢ m"*!. Put a; = (I,m"™!), and choose an ideal ay with
m" Cay C (I, m”“) =a; and  dimyg) (a1/az) = 1.

(Note that such ideals exist.) Let Z; C Spec (Oz,) be the closed subscheme defined by the
ideal a;(i = 1,2). We will show that the restriction of L to X x Y x Z, is trivial. This
implies that Z, is contained in Z’, which is a contradiction, since I ¢ as.

Write L; for the restriction of L to X x Y x Z;. By construction, L, is trivial; choose
a trivializing global section s. The inclusion Z; < Z5 induces a restriction map I' (Ly) —
I'(Ly). We claim: Ly is trivial if and only if s can be lifted to a global section of L. To see
this, suppose first that we have a lift s’. The schemes X x Y x Z; and X x Y x Z, have
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the same underlying point sets. If s'(P) = 0 for some point P then also s(P) = 0, but this
contradicts the assumption that s is a trivialization of L;. Hence s’ is nowhere zero, and
since Ly is locally free of rank 1 this implies that s’ trivializes L,. Conversely, if Lo is trivial
then the restriction mapI' (L) — I'(Lq) is just I' (Ogz,) — ' (Ogz,) and this is surjective.

The obstruction for lifting s to a global section of Ly is an element £ € H' (X X Y, Oxxy).
We know that the restrictions of Ly to {2} XY x Zy and to X x {y} x Z are trivial. Writing
i1 = (idx,y) : X =& X xY and iy = (z,idy) : Y — X X Y, this means that £ has trivial
image under i : H' (X X Y,Oxxy) — H'(X,0x) and under 3 : H' (X xY,Oxxy) —
H' (Y,0y). But the map (i}, 43) gives a (Kiinneth) isomorphism

H' (X xY,0Oxxy) — H' (X,0x) ® H* (Y, Oy)
hence £ = 0 and s can be lifted.
O

Theorem 4.17 (Theorem of the Cube). Let L be a line bundle on X. Then the line bundle

« 1\ 1H#T
o) = & pLs
Ic{1,2,3}

=piosL @ pio L @ 3L @ phy LT @ piL ® p5L @ piL

on X x X x X is trivial.
Proof: Restriction of O(L) to {0} x X x X gives the bundle
M LRps L @piL ' @m L™ @ Oxyx @ psL & piL

which is obviously trivial. Similarly for X x {0} x X and X x X x {0}. By the result

follows.
O

Corollary 4.18. Let Y be a scheme and let X be an abelian variety. For every triple f, g, h
of morphisms 'Y — X and for every line bundle L on X, the bundle

(f+g+h)'Le(f+g)' L @(f+h) 'L @(@+h)' L@ f LogLah'L
on Y 1is trivial.

Proof: Consider (f,g,h) : Y — X x X x X and use .
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Another important corollary is the following.

Corollary 4.19 (Theorem of the Square). Let X be an abelian variety and let L be a line
bundle on X. Then for all x,y € X (k),

i LOL=tLtL.

Proof: In the first formulation, this is immediate from by taking for f the identity
on X and for g and h the constant maps with images = and y.

O

Corollary 4.20. Let L be a line bundle on an abelian variety X. Let Pic(X) be the group
of isomorphism classes of line bundles on X. Then the map ¢ : X (k) — Pic(X) given by

x> [t2L ® L7 is a homomorphism.
Corollary 4.21. For every line bundle L on an abelian variety X and every n € 7 we have
[TL]*L ~ Ln(n+1)/2 ® [_1]*Ln(n—1)/2.
Proof: Set f =n,g =1, and h = —1. Applying , one finds that
M Len+1] L @n-1]"L'@n]L® Lo [-1]L

is trivial, i.e.,

L@ n+ 1L @ n—-1L = (Lo [-1*L)"".

The assertion now follows by induction, starting from the cases n = —1,0, 1.

Now we can prove abelian varieties are projective.

Lemma 4.22. If A is an abelian variety over an algebraically closed k and L = O4(D) for
an effective Cartier divisor D C A, then L®? is globally-generated.

Proof: Fix a € A(k). We must show that there exists an effective divisor £ € [2D| such
that @ ¢ E. Consider the dense open subset U := (A — D) 4+ a of A. Then, U N [-1]*U is
also a dense open subset of A, because A is irreducible. Pick b € UN[—1]*U and notice that
-asbeUb+a€e A—D;

-asbe [-1]*U,—b € U and hence a —b € A — D.
Thus, a ¢ b+ D and a ¢ —b+ D; in particular, a ¢ t_,(D) Ut,(D). If E :=t,(D) +t_(D),
then E' is an effective divisor on A and it is linearly equivalent to 2D by .
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Lemma 4.23. Let f: X — Y be a k-morphism between k-schemes of finite type over a field
k. If for any closed point x € X the fiber Xy is a finite set then f is quasi-finite.

Proof: See [4] 10.97.
U

Lemma 4.24. If A — B is a faithfully flat map between Noetherian rings. Assume X is a
proper A-scheme with £ € Pic(X), then Lg is ample on Xp if and only if L is ample on X.

Proof: 1t is directly from the equivalent definition ( [6] 5.3.6) of ample bundles by cohomology,

and flat base change theorem.
OJ

Lemma 4.25. Let X be an abelian variety over an algebraically closed field k. Let f : X —Y
be a morphism of k-varieties. For x € X, let C,, denote the connected component of the fibre
over f(x) such that x € C,, and write F, for the reduced scheme underlying C,. Then Fy is
an abelian subvariety of X and F, =t, (Fy) = x + Fy for all x € X (k).

Proof: Consider the morphism ¢ : X x F, — Y obtained by restricting f om to X x Fj.
Clearly ¢ ({0} x F,) = {f(x)}. Since F, is complete and connected, the @ implies that
¢ maps the fibres {z} x F} to a point. In particular, we find that f (y —z + F,) = f(y)
for all z,y € X (k). Putting y = z,z = 0 gives z + Fy C F,; putting y = 0,2 = z gives
—z + F, C F,. This shows that F, = z + Fj,.

To see that Fy is a subgroup scheme of X we take a geometric point a € Fy(k). Then
obviously F, = Fy so that a + Fy = F, = Fy. Since Fj is reduced, it follows that Fj is a
subgroup scheme of X. By @ it is smooth, then an abelian subvariety since it is integral [[13]
Variety 25.10.

O

Lemma 4.26. If X is a Noetherian reqular separated scheme, U C X is dense affine open,
then there exists an effective Cartier divisor D C X with U = X — D.

Proof: See [13] Divisor 16.6.
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Theorem 4.27. If X is an abelian variety over a field k, then X 1is projective over k.

Proof: It U C X is a non-empty affine open then D := X — U is an effective Cartier
divisor by last Lemma. Set L = Ox (D), then we claim that Lj is ample, which implies L
is ample by . By ng is globally-generated, so if we choose a k-basis of its global
section there is a morphism f : X — P7' such that f*(’)p%n(l) = L]%m. As any section of
L%’Q is pulled back from a section of (’)p?(l), there exists a hyperplane H C P}" such that
f~Y(H) = 2Dj, using regular sections of effective Cartier divisors. For any closed point
v € PP —H, f'(x) C Xz — Dy = Ug (moreover, there exists such an z with f~'(z) is
non-empty, because f is defined by a complete linear system). If f~!(z) is non-empty, then
since Uy, is affine and f~1(x) is proper, it follows that f~!(z) is finite; Proposition and
then implies that f is quasi-finite. By Zariski’s main theorem, f is finite, and hence Lj
is ample, since L%Q is the pullback of the ample line bundle Opgl(l) by the finite map f.

O

4.3 Isogenies of abelian varieties

In this section we define the notion of an isogeny, which is an important class of homomor-

phisms between abelian varieties.

Remark 4.28. Note that for a Category C, if it has any finite limit, then so is the AbGrp(C)
and any finite limit in AbGrp(C) is created in C. So for any homomorphism of groups S-
schemes f : X — Y over a base scheme S, the fiber of 0 is a closed subgroup scheme of X

and we write it as Ker(f).

Note that we have proved that the category C} of commutative algebraic groups over a
field k is an abelian category. Actually, we will see any quotient of an abelian variety is still

an abelian variety in the following proposition.

Proposition 4.29. Let f : X — Y be an epimorphism (i.e. fppf surjective homomorphism)

in Cy. If X is an abelian variety, then so is Y.

Proof: Tt suffices to show that Y is proper and geometrically integral over k. For the
properness, it is immediately from [6] 3.3.16. Also, Y is geometrically irreducible since
Xy — Y3 is surjective. Finally, since f is flat, we see Oy, ;) = Ox, . is injective for any

x € Xj. Therefore we conclude that Y is geometrically reduced.
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Lemma 4.30.

(i) Let R — S be a local homomorphism of Noetherian local rings. Assume that R is
reqular, S Cohen-Macaulay, and dim(S) = dim(R) + dim (S/mgS). Then R — S is
flat.

(i) Let f: R — S be a morphism of finite type between noetherian rings, with R integral.
Then there is a non-zero f € R such that Sy is a free Rs-module.

Proof: A proof of (i) can be found in [13], Algebra 128.1. For (ii) we refer to [13], Algebra
118.1.

N

Proposition 4.31. Let f : X — Y be a homomorphism of abelian varieties. Then the

following conditions are equivalent:

(a) [ is surjective and dim(X) = dim(Y');

(b) Ker(f) is a finite group scheme and dim(X) = dim(Y);
(c) f is a finite, flat and surjective morphism.

Proof: Let us first assume that (b) holds. As fj is proper it is quasi-finite at 0. So it is
flat at 0 by (i) of the lemma. Because all rational fibres are translates of Ker(f;) it follows

that f is flat, and so is f. Therefore, for any z € X, we have
dim Oy, , = dim Ox, — dim Oy, = tr. deg, (k(y)) — tr. deg; (k(z)) <0

It must be 0 because the left is non-negative. So f is quasi-finite and hence finite. It means

f(X) is closed and open in Y. Hence f is surjective. This shows that (a) and (c) hold.

Next suppose that (a) holds. By (ii) of the lemma, f; is flat over a non-empty open subset
U C X. As all rational fibres of f; are translates of Ker(f;), f7 is flat. By the same argument
we have f is finite. So (a) implies (b).
Finally, it is easy to check (c) implies (a).

O]
Definition 4.32. A homomorphism [ : X — Y of abelian varieties is called an isogeny if f
satisfies the three equivalent conditions (a), (b) and (c) in . The degree of an isogeny f
is the degree of the function field extension deg(f) = [K(X) : K(Y)]. (Note that we have a

homomorphism K(Y) — K(X), since an isogeny is surjective and hence dominant.)
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Remark 4.33. Let f : X — Y be an isogeny. Computing this rank at the generic point of
Y, respectively the closed point 0 € Y, gives

deg(f) = ranko, (f.Ox) = dimy, I'(Ker(f))
If f : X > Y and g: Y — Z are isogenies then so is go f, and deg(go f) = deg(g) - deg(f).

Lemma 4.34. Let f : W — X and h : Y — Z be isogenies of abelian varieties over k. If
g1, g2 : X = Y are homomorphisms such that ho gy o f = ho gyo f then g1 = gs.

Proof: Suppose ho gy o f=hogyo f. Because f is faithfully flat, it is an epimorphism

of schemes, so it follows that h o g = h o g5. Hence g; — go maps X into the finite group

0

scheme Ker(h). As X is connected and reduced, g; — g factors through Ker(h)),, , which is

trivial.
O

This means any isogeny is both monomorphism and epimorphism in AVy. Next we introduce

a special class of isogenies.

Lemma 4.35. (see [13]Algebra 140.9) Let R — S be an injective ring map of finite type with
R and S Noetherian domains. Then R — S is smooth at q = (0) if the induced extension
L/K of fraction fields is finite separable.

Proposition 4.36. Let f: X — Y be an isogeny. The following conditions are equivalent.
(a) The function field K(X) is a separable field extension of K(Y');

(b) f is an étale morphism;

(c) Ker(f) is an étale group scheme.

Proof: Tt is clear that (b) implies (a) and (c).

Suppose that (a) holds. By the lemma above f; is smooth at a neighborhood of the generic
point £ of X. So by translating to all closed points of Xz we conclude f3 is smooth and so
is f. Then 2y = 0 because X is connected, (2 is locally free of finite rank and 25, = 0. So

f is étale. This means (a) implies (b).

Suppose that (c) holds we have . o = 0 by Nakayama lemma. Then by translating to
all closed points of Xj we conclude €2y, = 0 and hence €2y = 0. Taking the stalk of the £ we
have Qx (x)/x(v) = p¢ = 0, which means K(X)|K(Y') is separable.
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O

Definition 4.37. An isogeny f : X — Y is called separable if it satisfies the three equivalent
conditions above. It is called a (purely) inseparable isogeny if it satisfies three equivalent

conditions above.

Definition 4.38. Let f : X — S be a morphism of schemes. We say that f is universally
injective if and only if for any morphism of schemes S’ — S the base change f': Xg — S’

is injective (on underlying topological spaces).

Lemma 4.39. (see [13] Morphism 10.2) Let f : X — S be a morphism of schemes. The

following are equivalent:
(i) For every field K the induced map Mor(Spec(K'), X)) — Mor(Spec(K), S) is injective.
(i) The morphism f is universally injective.

(iii) The morphism f is injective, and for every x € X the field extension k(z)|k(f(z)) is

purely inseparable.
(iv) The diagonal morphism Ax/g: X — X xg X is surjective.

Proposition 4.40. Let f : X — Y be an isogeny of abelian varieties. The following

conditions are equivalent.

(a) The function field K(X) is a purely inseparable field extension of K(Y);
(b) f is a universally injective morphism;

(c) Ker(f) is a connected group scheme.

Proof: Assume (a) holds. We can factor f as a composition of two isogenies: X —
X/Ker(f)? — Y. The kernel of the second isogeny is Ker(f)/Ker(f)°, which is étale. (See
also ) Using it follows that (c) holds.

That (b) implies (a) is immediate from property (ii) in , applied to the generic point
of X.

Finally suppose that (c) holds. Let k C K be a field extension. Let A be the affine
algebra of N and write Ax = A®, K. If y : spec(K) — Y is a K-valued point then
the scheme-theoretic fibre f~'(y) := X xy,, Spec(K) is isomorphic to Nx = Spec (Ax) by
translation. As Ay has finite K-dimension it is an artinian ring. Any artinian ring is a

product of artinian local rings; this corresponds to the decomposition of f~!(y) as a union
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of connected components. But we know from (i) of (3.17) that Nk is a connected scheme.
Hence Ay is artinian local and | f~!(y)| consists of a single point. This shows that f satisfies

condition (i) of and therefore K(Y') — K(X) is purely inseparable.
U

Proposition 4.41. Every isogeny f : X — Y can be factorized as f = hog, whereg : X — Z
is an inseparable isogeny and h : Z — Y is a separable isogeny. This factorization is unique
up to isomorphism, in the sense that if f = h'og : X — Z' — Y s a second such

factorization then there is an isomorphism o : Z — Z' with ¢ = a0 g and h = W o «.
Proof: Immediate from the above and .

4

An important example of an isogeny is the multiplication [n]y : X — X by an integer n # 0.

We write X[n| := Ker ([n]x) C X.

Theorem 4.42. For n # 0, the morphism [n]x is an isogeny. If g = dim(X), we have
deg ([n|x) = n?. If (char(k),n) = 1 then [n]x is separable.

Proof: Choose an ample and symmetric line bundle L on X. (Recall that L is said to
be symmetric if (—1)*L = L, and note that if L is ample then L ® (—1)*L is ample and
symmetric.) By we know that ni L = L®". The restiction of n% L to Ker([n]) is a
trivial bundle which is ample. (Here we use that n # 0.) This implies that Ker(f) must be
finite, hence [n]x is an isogeny. To compute the degree we use intersection theory of line
bundles on projective varieties. Choose an ample and symmetric line bundle L on X. Then
deg ([n]x) - (L)? = ([n]5L)?. But [n]%L is L&, so ([n]iL)? = n® - (L)9, and we find that
deg ([n]x) = n*.

If char(k) = 0 then the last assertion is trivial. If char(k) = p > 0 with p{ n then also p
does not divide n? = [K (X;) : K (X3)], the field extension K (X,) C K (X;) given by f is

separable.
O

Proposition 4.43. Let X be an abelian variety of dim g > 0. Then for an integer n # 0,
[n]x is separable if and only if (char(k),n) = 1.

Proof: We only need to prove the “only if” part. Assume that [n] is separable. Therefore
[n] is etale and we conclude Ty, AN Tx . is isomorphic, so we must have p { n otherwise the

multiplication by n on g-dimensional k-linear space T'x . is 0, contradiction.
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Proposition 4.44. If X is an abelian variety over an algebraically closed field k then X (k) is
a divisible group. That is, for every P € X (k) and n € Z\{0} there exists a point Q € X (k)
withn - Q = P.

Proof: By the algebraically closed assumption, X (k) is the same as closed points on X.
The previous theorem that [n] is an isogeny implies [n]~*(P) is a non empty closed set of X
for any closed point P € X. Then the statement is directly from the Jacobson property on
X.

Corollary 4.45. If (char(k),n) = 1 then X[n] (k,) = X[n](k) = (Z/nZ)>.

Proof: We know that X|[n] is an étale group scheme of rank n%. Hence X|[n] (ks) =
X[n](k) is an abelian group of order n?9, killed by n. Further, for every prime divisor I™ of
n the subgroup of elements killed by ™ is just X[I™] (ks) and has order [*. Tt now readily

[

follows from the structure theorem for finite abelian groups that we must have X|[n] (k) =

(Z/nZ)%.
O

Proposition 4.46. If f : X — Y is an isogeny of degree d then there exists an isogeny
g:Y = X withgo f=[d|x and fog=[d]y.

Proof: 1f deg(f) = d then Ker(f) is a finite group scheme of rank d and is therefore annihi-
lated by multiplication by d; see . It follows that [d]x factors as

dx =X LY % X)

for some isogeny g : Y — X. Then go[dly = [d]xog = (go f)og=go(fog), and by
Lemma it follows that f o g = [d]y.

O

Corollary 4.47. The relation X ~ Y is an equivalence relation on the set of isomorphic
class of abelian varieties over k. (Isomorphic class of abelian varieties over k is a set since

any abelian variety is projective over k.)
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4.4 Frobenius and p-rank of abelian varieties

For any S-scheme of p = 0, we have a natural transformation Fy/s: X — X (/%) called the
relative Frobenius morphism. Actually, if X is a group S-scheme, then Fx/g is a homomor-

phism by the following diagram.

! !

XW0/9) 5 g XWIS) =5 (X x4 X)/S)
For more details, see [6] 3.2.4.

Proposition 4.48. Let X be a g-dimensional abelian variety over a field k with char(k) =
p > 0. Then the relative Frobenius homomorphism Fx, : X — X®) s q purely inseparable

isogeny of degree pY.

Proof: Write X[F] := Ker (Fx/;). On underlying topological spaces, the absolute Frobe-
nius Froby : X — X is the identity. It follows that the topological space underlying X [F]
is the singleton {e}, which must be finite over £ by Noetherian normalization, hence Fy/j is
an isogeny.

Let now U = Spec(A) be an affine open neigbourhood of e in X such that e corresponds
to the maximal ideal m C A. Write A for the m-adic completion of A. Without loss of
generality we may assume that z1, ..., z, form a basis of m/m? = T)%e. The structure theory

for complete regular local rings tells us that there is an isomorphism
kl[ty, ... t,)] = A

sending t; to x;, see . Since X [F] is a spectrum of artin local ring, by we find that

[t -t/ (B, 10)

1ot/ (), 2h)

In particular this shows that deg (Fx/x) = rank(X[F]) = p? and that X[F] is a connected

group scheme.
O

Our next goal is to define the Verschiebung isogeny for abelian varieties in characteristic p. In

fact, under a suitable assumption the Verschiebung can be defined for arbitrary commutative
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group schemes over a basis S with char(S) = p; we shall give the construction in this
generality. First we need some preparations.

Let M be an R-module with char(R) = p. The symmetrization operator is the R-module

homomorphism
N : M®P — (M)
m ... 0my, — Zma(l)@)...@mg(p)
o€Sy
The map

om 2 M @R, mrob R — (M®p)sp /im(N)
MRAAX—= A mMR...0m
is a natural additive transformation because

p—1
1
(a+b)®...®(a+b):a®...®a+b®...®b+zm1\7(g®...®q®@®...®13).
Z:1 . . Vv vV

7 p—i

Both sides of @), are compatible with direct sums (the mixed terms of the right hand side

are in the image of N ), and with filtered direct limits. For M = R we get
N(a®...@a,)=p!-[[a=0

and thus ¢, is an isomorphism in this case. It follows that ¢, is even an isomorphism for
all modules M which are filtered inductive direct limits of free R-modules. These are exactly
the flat R-modules by a theorem of Lazard. For flat R-modules M of finite rank we may
also argue Zariski-local, where M becomes free.

Now we treat N and ¢, in the case of M equal to an R-algebra A. The image of N is

an ideal and ¢, is an R-algebra map. Let
pr: A%P — SymP(A)
denote the quotient map of the Sy-coinvariants. Then we compute
proN (a1 ®...®apy) =p!-pr(a; ®...®a,) =0

and so for a commutative and cocommutative Hopf algebra A we get the following commu-
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tative diagram of R-algebra maps.

diagram 1
A 2 > A®P . > A
k / N /
(A®P)Se Sym? A
(A=) [im(N)
T«:A
A @pprob R

The top row is the map which induces the multiplication by p map [p] : G — G on the
associated affine group G = Spec(A). The right edge leads to

fiotopy: AP — A
AR A=A a®..Qa—pr(A-a®...®a)— A-d”
which is easily identified with the relative Frobenius Fg/r : G — G®) . For A representing a
flat R-group G the left edge leads to the Verschiebung Vi /g : G®) — G by
Vi =(pa) tomoA: A— AP,
Because ¢4 is natural with respect to maps of R-algebras and tensor products, we get

Vaxaro A= (Vor x Va/r) o A = AP o Vg i

and the Verschiebung turns out to be a group homomorphism.

We now globalize these constructions. For this, consider a base scheme S of characteristic
p and an S-scheme g : X — S where ¢ is affine. We know that the category of affine S-
schemes (warning: “affine” here means structure morphism X — S is affine) is equivalent to
the category of commutative quasi-coherent Og-algebras. So we can replace R into Og, A
into a flat commutative quasi-coherent Og-algebra A in the construction above. With this

definition we get immediately the following proposition.

Proposition 4.49. Let S be a scheme with char(S) = p > 0. Let G be a flat affine
commutative S-group scheme, then there is a natural homomorphism Vg : Gw/9 - @
satisfying

VaysoFgis =ple:G— G
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Proof: The statement follows from the affine case on diagram 1 above.
O

Proposition 4.50. (i) Let X be an abelian variety over a field k with char(k) = p > 0,
then there exist a unique homomorhism Vx : X® — X such that Vxk o Fx = plx -
X — X, which is called Verschiebung of an abelian variety.

(ii) If f : X — Y is an isogeny of abelian varieties, then f o Vx = Vy o fP)

Proof: The uniqueness is clear by . For the existence, consider following diagram.

0 —— X|[F] y X £ X0 > 0
| [p]l
L/
X[F] — X

It suffices to show that [p]x(s = 0. Note X[F] is clearly flat affine over k, so we have natural

Verschiebung on it. Now consider following diagram.

It is easy to show that Fx;p = 0, hence [p]x(p = 0.
(ii) It is directly from the commutativity of [p] and the fact that the relative Frobenius of

an abelian variety is an epimorphism.

Now we introduce one of the most important invariant of abelian varieties.

Theorem 4.51. If X is an abelian variety of dimension g over field k of characteristic p,

then there is a unique integer 0 <1i < g, i = f(X) called the p-rank of X, such that
X [p"] (k) = (Z/p"Z)".

Proof: Without the generalization we can assume k = k. We proceed by induction on
m. Consider first the case m =1 : we have seen that the map [p] : X — X factors over the
relative Frobenius Froby, as

P ) V.,
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As Frobxy, is a homeomorphism, there is a bijection between the p-torsion k-points X [p|(k) =
[p]7'(e)(k) and the k-points V~*(e)(k). Since deg([p]) = p* and deg(Frobx/) = p’,
we must have degV = p9; in particular, the cardinality of X|[p|(k) is bounded above by
#V~1(e)(k) < p? (indeed, the degree is the size of the schemetheoretic fibre, which is at
least the degree of the set-theoretic fibre). However, X|[p|(k) is a p-torsion abelian group,
and thus there exists 0 < ¢ < g such that X[p|(k) ~ (Z/pZ)".

If m > 1, we can use that [p™] : X — X is surjective by (and hence that X (k) is

divisible) to construct a short exact sequence
m [p] m—
0 — X[pl(k) — X [p"] (k) = X [p"~"] (k) — 0.

By induction on m, we have isomorphisms X [p](k) ~ (Z/pZ)" and X [p™~1] (k) ~ (Z/p™ ‘7Y,
SO

#X [p"] (K) = # (Z/pZ)' < # (Z/p" ‘L)' = # (Z/p" L)',
i.e. X [p™] (k) has the correct cardinality. Now, observe that Ker(p) of p : X [p™] (k) —
X [p™] (k) is exactly X[p](k) ~ (Z/pZ)', so X [p™] (k) must be (Z/p™Z)" by the structure

theorem for finite abelian groups.
O

Remark 4.52. (i) Let X be an abelian variety of p-rank f > 0 over a mon-perfect field
k, and let k C ky C k be respectively a separable closure and an algebraic closure of k.
Then we have natural injective maps X [p™] (ks) — X [p™] (k), but these are not, in general,
isomorphisms. In other words, in order to see all p™ distinct physical points of order p™,
in general we need an inseparable extension of the ground field.

(i) The p-rank does not depend on the ground field. More precisely, if k C K is a field
extension and X is an abelian variety over k then f(X) = f(Xk). To see this we may
assume that k and K are both algebraically closed. Since k is algebraically closed, any con-
nected component Z C X|p| is a geometrically connected finite open sub k-scheme. This
implies that Zg is a single point. So Xk|[p|(K) has the same cardinality as X [p|(k), indeed
F(X) = f(Xk).

(iii) f (X1 x Xo) = f(Xy) + f(Xs) for abelian varieties X, and Xo over k.

Proposition 4.53. If h : X — Y 4s an isogeny of abelian varieties over a field k, then
fF(X) = f(Y).
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Proof: Assume deg(g) = d. Consider following diagram

~
e}

0 —— Ker(h) > X

> Y
! | |
0 — Kppm —— X[p"] —— Yp"]

We have # K}, (k) < ranky(Kp,,) < rankg(Ker(h)) = d. Then by the exact sequence
0 = Kpm(k) = X[p"](k) = Y[p™](k)

we get p™/(X) < d. p™fY) | Taking m large enough, it follows that f(X) < f(V). As X ~Y
is a symmetric relation, we conclude that f(X) = f(Y).

O

An elliptic curve X is said to be ordinary if f(X) = 1 and supersingular if f(X) = 0. We

end this paper with following beautiful theorems about p-rank of elliptic curves. [[7]
Theorem 4.54. Let C' be an elliptic curve over a field k. Then ht(C) =1 or ht(C) = 2.

Proof: We know that C[p] = Spec R for a finite k-algebra R of rank p*. The (formal)
group scheme C/’[;ﬂ is represented by lim R/m? where m corresponds 0 € C[p]. As R is Ar-
tinian, we have m"¥ = m¥*! = ... for some N > 0 and thus lim R/m/ = R/m”". Note that

Spec R/mY = Spf R/m" as m" is already open ideal.

If one chooses a coordinate on C, one obtains a formal group law F over k. By we
know that k[[xm(x) represents the p-torsion C[p], we obtain k[[xm(x) ~ R/m" is a
finite k-module, so [p]r(x) # 0 and h = ht(F') < co. Therefore we have

BT/l (@) = tim k{2 /(PTr(@), + 29) == klal/ (Bl (@) oy + 27 )
where [p|r(z); means the first j terms of [p]r(x). Thus,
pPeEt ) — dim, k[x]/([p]p(x)phﬂ—l—xph*l) = dimy, k[[xm(x) = dimy R/m" < dim;, R = p*.
U

Theorem 4.55. Let C' be an elliptic curve over a field k. Then following conditions are
equivalent

(1) [plc is a purely inseparable isogeny;

(ii) C is supersingular;

(iii) ht(C) = 2.

Particularly, by the last theorem we have ht(C) + f(C) = 2.
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Proof: Suppose (i) holds, then C[p] is connected and hence geometrically connected by .

But C[p] is geometrically connected is equivalent to Clp|(k) = 0, so (i) is equivalent to (ii).

Suppose (ii) holds, then C[p] = Spec(R) is artinian local. Therefore m"¥ = 0 and

pheight(F) = dimy, R/mN =dim; R = p2

So we get (ii) implies (iii).

Suppose (iii) holds, then

pheisht(F) — qipy, R/mN = p? = dim; R

So m" must be 0, which implies (R, m) is artinian local and C[p] is connected. We get (iii)

implies (ii).
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