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Abstract

Many concepts from higher algebra—such as finitely presented, flat, and étale morphisms of E∞-
rings—can be naturally generalized to the setting of t-structured tensor triangulated ∞-categories (ttt-
∞-categories).

Under a natural structural condition we call “projective rigidity”, we establish analogues of Lazard’s
theorem, étale rigidity, and the universal property of the derived category. We show that projective
rigidity holds in many familiar examples, including the ∞-categories of spectra, filtered spectra, graded
spectra, genuine G-spectra for finite groups G, and Artin–Tate motivic spectra over a perfect field—all
equipped with their standard t-structures.
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Introduction

The flatness of a module over a connective E∞-ring can be characterized by the t-exactness of the tensor
product functor. This observation suggests that many concepts from higher algebra can be meaningfully gen-
eralized to the setting of t-structured tensor triangulated ∞-categories (ttt-∞-categories), including (faith-
fully) flat morphisms, étale morphisms, and more. Similar ideas were developed in [KM25; BKK24; KKM22;
Rak20; Man23].
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This paper makes heavy use of the theory of∞-categories and related notions, as developed in Jacob Lurie’s
three big books [HTT; HA; SAG].

Warning 0.1. This document is a draft in progress and should be used at your own risk. Specifically, the
statements marked with “??” are likely true, but I have not yet figured out a proof or disproof. Any thoughts
or ideas regarding these statements are welcome!

Convention 0.2. Throughout this paper, we fix a t-structured tensor triangulated ∞-category (ttt-∞-
category) (A⊗,A≥0,A≤0). This consists of a presentably, stably, symmetric monoidal ∞-category A⊗ ∈
CAlg(PrLst) equipped with an accessible t-structure (A≥0,A≤0) that is compatible with the monoidal structure
in the following sense:

(1) The unit 1 ∈ A≥0;

(2) For any two connective objects X,Y ∈ A≥0, we have X ⊗ Y ∈ A≥0.

Convention 0.3. (1) Since a t-structure is determined by its connective part, we will simply denote a
ttt-∞-category by (A⊗,A≥0) rather than (A⊗,A≥0,A≤0).

(2) Some references refer to a presentably, stably, symmetric monoidal∞-category as a “big” tt-∞-category.
However, we do not deal with small ones in this paper and we will omit the prefix “big”; thus, when we
use the terms tt-∞-category or ttt-∞-category, they are implicitly assumed to be big.

(3) We will often say A satisfies a property P if the full structure (A,A≥0,A≤0) satisfies property P . For
example, we will say A is right complete if its t-structure is right complete.

We list our main results as follows.

Theorem 0.4 (Proposition 4.12, Theorem 4.18, and Proposition 5.7). Assume that A is Grothendieck (see
Definition 1.14) and that A≥0 is projectively generated. Let R ∈ Alg(A≥0). Then the following hold:

(1) The inclusion LModR(A≥0)
cproj ↪→ LModR(A≥0)

proj of the full subcategory of compact projective R-
modules into that of all projective R-modules induces an equivalence

P
∞⊔,Idem
⊔ (LModR(A≥0)

cproj) ≃ LModR(A≥0)
proj,

where the left-hand side is the relative cocompletion obtained by formally adding small coproducts and
idempotent completions while preserving existing finite coproducts. (See Theorem B.2 for the construc-
tion of the relative cocompletion.)

(2) (Lazard’s Theorem.) If A⊗
≥0 is projectively rigid (see Definition 4.13), then the inclusion LModR(A≥0)

cproj ↪→
LModR(A)fl of compact projective R-modules into flat R-modules induces an equivalence

P
⊔,fil
⊔ (LModR(A≥0)

cproj) ≃ LModR(A)fl,

where the left-hand side is the relative cocompletion obtained by formally adding small filtered colimits
and finite coproducts while preserving existing finite coproducts. Alternatively, flat R-modules can be
described as:

Ind(LModR(A≥0)
cproj) ≃ LModR(A)fl.

(3) The inclusion LModR(A≥0)
cproj ↪→ LModR(A≥0)

aperf of compact projective R-modules into almost
perfect R-modules induces an equivalence

P
⊔,∆op

⊔ (LModR(A≥0)
cproj) ≃ LModR(A≥0)

aperf ,

where the left-hand side is the relative cocompletion obtained by formally adding geometric realizations
and finite coproducts while preserving existing finite coproducts. Alternatively, almost perfect R-modules
can be described as:

P∆op

∅ (LModR(A≥0)
cproj) ≃ LModR(A≥0)

aperf .
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Theorem 0.5 (Theorem 4.19). Assume that A is Grothendieck and A≥0 is projectively generated. Then the
following hold:

(1) For any discrete R ∈ Alg(A♡) there exists a (unique up to contractible choices) equivalence in Prt-rexst

D(LModπ0R(A
♡))

∼−→ LModR(A)

which induces the identity functor on the heart.

(2) Assume that the A⊗
≥0 is projectively rigid. Then for any discrete commutative algebra R ∈ CAlg(A♡)

there exists a (unique up to contractible choices) equivalence in CAlg(Prt-rexst )

D(Modπ0R(A
♡))⊗

∼−→ ModR(A)⊗

which induces the identity functor on the heart, where the symmetric monoidal structure on left-hand
side is induced by projective model with tensor product of chain complexes.

Since our examples only admit enough projectives but not enough frees, the Zariski topology should admit
a basis of “principle Cohn localizations”.

Theorem 0.6 (Theorem 4.22, Cohn localization). Assume that A is Grothendieck and A⊗
≥0 is projectively

rigid. Let R ∈ CAlg(A≥0), and let S be a set of morphisms between compact projective R-modules. Then there
exists a Cohn localization, a map R → R[S−1] in CAlg(A≥0), satisfying the following universal property:
For any B ∈ CAlg(A), the map

MapCAlg(A)(R[S
−1], B)→ MapCAlg(A)(R,B),

induced by precomposition, is (−1)-truncated.

Furthermore, the image of the induced map on connected components consists of precisely those (homotopy
classes of) maps R→ B such that for each morphism f ∈ S, the map B⊗Rf is an equivalence of B-modules.

We also prove the following higher version of Nakayama’s Lemma. (See [HS24, §2] for some applications in
the context of almost E∞-rings.)

Theorem 0.7 (Theorem 6.5, Nakayama’s Lemma). Assume that A is hypercomplete. Let Ã → A be a
nilpotent thickening in Alg(A≥0). Then the base change functor A⊗Ã (−), when restricted to modules that
are bounded below,

LModÃ(A)− → LModA(A)−,

is conservative.

Theorem 0.8 (Theorem 6.19). Suppose A is Grothendieck and A⊗
≥0 is projectively rigid. Let f : A→ B be

a faithfully flat morphism in CAlg(A) such that π0B is an ℵn-compact π0A-module for some integer n ≥ 0.
Then f is descendable.

We generalize the main result in [HS24] to our settings.

Theorem 0.9 (Theorem 6.22). Assume that A is Grothendieck and A≥0 is dualizable additive. Let R ∈
CAlg(A≥0). Consider the full subcategory LQR of CAlg(A≥0)R/ spanned by the maps φ : R→ S for which

(1) the multiplication S ⊗R S → S is an equivalence, i.e. φ is idempotent,

(2) π0(φ) : π0R→ π0S is epimorphic in A♡.

Then the functor
LQR −→

{
I ⊆ π0R | I2 = I

}
, φ 7−→ Ker(π0φ)
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is an equivalence of categories, where we again regard the target as a poset via the inclusion ordering. The
inverse image of some I ⊆ π0(R) can be described more directly as R/I∞, where

I∞ = lim
n∈Nop

J⊗Rn
I

with JI → R the fibre of the canonical map R → H(π0(R)/I). Furthermore, this inverse system stabilises
on πi for n > i+ 1.

The image of the fully faithful restriction functor ModR/I∞(A)→ ModR(A) consists exactly of those modules
whose homotopy is killed by I, as desired.

We also proved the following version of étale rigidity.

Theorem 0.10 (Theorem 7.24, Étale rigidity). Assume that A is Grothendieck and left complete. Let
A ∈ CAlg(A). Then:

(1) Suppose that A is connective. Let CAlg(A)fl,L-et
A/ denote the full subcategory of CAlg(A)A/ spanned by

the flat L-étale maps A→ B. Then the functor π0 induces an equivalence

CAlg(A)fl,L-et
A/

∼−→ CAlg(A♡)fl,L-et
π0A/

with (the nerve of) the discrete flat L-étale commutative π0A-algebras.

(2) Suppose that A⊗
≥0 is projectively rigid. Let CAlg(A)etA/ denote the full subcategory of CAlg(A)A/ spanned

by the étale maps A→ B. Then the functor π0 induces an equivalence

CAlg(A)etA/
∼−→ CAlg(A♡)etπ0A/

with (the nerve of) the discrete étale commutative π0A-algebras.

Theorem 0.11 (Theorem 8.11, Universal algebraic ttt-∞-category). The CAlgrig,atSp≥0
admits a compact gen-

erator
Fun(Cobop

1 ,Sp≥0)
⊗

where the symmetric monoidal structure is given by Day convolution and Cob1 denotes the 1-dimensional
framed cobordism (∞, 1)-category.

We list a collection of algebraic ttt-∞-categories here.

Example 0.12. Examples of algebraic ttt-∞-categories.

(1) The Fun(Iop,Sp)⊗, where I⊗ is a small rigid symmetric monoidal ∞-category, like
the Fil(Sp)⊗ = Fun(Z,Sp)⊗ the ∞-category of filtered spectra;
the Gr(Sp)

⊗
= Fun(Zdisc,Sp)⊗ the ∞-category of graded spectra .

(2) the Sp(PΣ(I))
⊗, where I⊗ is a small rigid finite-coproduct cocompletely symmetric monoidal ∞-

category, like Sp⊗G = Sp(PΣ(FinG))
⊗ the genuine G-spectra over a finite group G.

As Proposition 8.8 indicates, actually every algebraic ttt-∞-category comes from this way.

(3) Universal example in CAlgrig,atSp≥0
: the 1-dim cobordism Fun(Cobop

1 ,Sp)
⊗

(4) The ShΣ(C)
⊗ where C is an excellent ∞-site, see [Pst23]. For example the synthetic spectra Syn⊗E??

(need certain conditions on E)

(5) The ∞-category Shv(X,Sp)⊗ of sheaves on a stone space??

(6) The ∞-category Shv(X,Sp)⊗ of sheaves on an ∞-topos of locally homotopy dim=0??

(7) The∞-category SH(k)A−T
≥0 of connective Artin-Tate motivic spectra over a perfect field k, see [BHS20].
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(8) Cyclotomic spectra and Cartier modules [AN21]??

(9) [HP23][HP24], equivariant [Bar17], motivic [Bac+22] [BHS20], Beilinson t, Ban, condensed, Liquid,
[Lur15]

(10) Qcoh(X)≥0, where X is an affine quotient stack, i.e. a stack of the form Spec(R)/G for a linearly
reductive group G acting on Spec(R), this works: the compact projective objects are generated under
taking retracts by pullbacks of G-representations and the dual is given by the pullback of the dual in
this case.

(11) Voevodsky’s category DM(k,Z[1/p]) (where p is characteristic of k or 1 if k is a Q-algebra), then there
is a Chow t-structure on it, generated by smooth projective varieties and their P1-desuspensions. The
mapping spectra between smooth projective varieties are connective, so they are compact projective
generators, and they are also dualizable within the retract closed-subcategory generated by it.
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1 Grothendieck prestable ∞-categories

1.1 Prestable ∞-categories

Now we recall some basic relations between prestable ∞-categories and stable ∞-categories equipped with
t-structures. For a more complete exposition, we refer the reader to [SAG, Appendix C].

Definition 1.1 (See [SAG] C.1.2.2). A prestable ∞-category is an ∞-category C satisfying the following
properties:

(1) The initial and final objects of C agree (that is, C is pointed).

(2) Every cofiber sequence in C is also a fiber sequence.

(3) Every map in C of the form f : X → Σ(Y ) is the cofiber of its fiber.

Moreover, we say C is a Grothendieck prestable ∞-category if it further satisfies that it is presentable and
that filtered colimits and finite limits commute in C. We let Groth∞ ⊂ PrL denote the full subcategory
whose objects are Grothendieck prestable ∞-categories.

Example 1.2.

(1) Any stable ∞-category is prestable.
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(2) Let C be a stable ∞-category equipped with a t-structure (C⩾0,C⩽0). Then the full subcategory
C⩾0 ⊆ C is prestable.

Prestable ∞-categories have a quite close relation to t-structured stable ∞-categories.

Proposition 1.3. Let C be an ∞-category. The following conditions are equivalent:

(1) The ∞-category C is prestable and admits finite limits.

(2) The ∞-category C is pointed and admits finite colimits, and the canonical map ρ : C→ SW(C) is fully
faithful. Moreover, the stable ∞-category SW(C) admits a t-structure (SW(C)⩾0,SW(C)⩽0) where
SW(C)⩾0 is the essential image of ρ.

(3) There exists a stable ∞-category D equipped with a t-structure (D⩾0,D⩽0) and an equivalence of ∞-
categories C ≃ D⩾0.

where SW(−) denotes the Spanier-Whitehead construction.

Proposition 1.4 (See [SAG] C.1.4.1). Let C be a presentable ∞-category. The following conditions are
equivalent:

(a) The ∞-category C is prestable and filtered colimits in C are left exact (see [HTT, Definition 7.3.4.2]).

(b) The ∞-category C is prestable and the functor Ω : C→ C commutes with filtered colimits.

(c) The ∞-category C is prestable and the functor Ω∞ : Sp(C)→ C commutes with filtered colimits.

(d) There exists a presentable stable ∞-category D, a t-structure (D⩾0,D⩽0) on D which is compatible
with filtered colimits, and an equivalence C ≃ D⩾0.

(e) The suspension functor Σ+ : C→ Sp(C) is fully faithful and its essential image Sp(C)≥0 is the connec-
tive part of a t-structure on Sp(C) which is compatible with filtered colimits.

Definition 1.5. We say a presentable prestable ∞-category is Grothendieck if it satisfies above equivalent
conditions.

Theorem 1.6 (See [SAG] C.4.2.1). The full subcategory Groth∞ ⊂ PrLad contains the unit object of Sp≥0

and is closed under Lurie tensor products. Consequently, Groth∞ inherits a symmetric monoidal structure
for which the inclusion Groth∞ ↪→ PrLad is symmetric monoidal.

Definition 1.7 (See [SAG] C.3.1.3). Let C be a presentable stable∞-category. We define a full subcategory
C⩾0 ⊆ C to be a core if it is closed under small colimits and extensions.
We will refer to Pr+st as the ∞-category of cored stable ∞-categories. The objects of Pr+st are pairs (C,C⩾0),
where C is a presentable stable ∞-category and C⩾0 ⊆ C is a core. A morphism from (C,C⩾0) to (D,D⩾0)
is given by a colimit-preserving functor f : C→ D satisfying f (C⩾0) ⊆ D⩾0.

Remark 1.8.

(1) Warning: The C⩾0 in this definition is not necessarily the connective part of an accessible t-structure
unless it is presentable. If C⩾0 is presentable, then we call the pair (C,C⩾0) a (big) t-structured stable
∞-category.

(2) In fact, we only care about the full subcategory Prt-rexst ⊂ Pr+st spanned by those (big) t-structured
stable ∞-categories with right t-exact functors. However, the technical advantage of Pr+st is that it
admits good colimits and limits [SAG, Remark C.3.1.7].

(3) In [SAG, Remark C.3.1.3], our Pr+st is denoted by Groth+∞.
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Definition 1.9. There is a natural symmetric monoidal structure on Pr+st given by the construction:

(C,C⩾0)⊗ (D,D⩾0) = (C⊗D,m! (C⩾0,D⩾0))

where C⊗D is the Lurie tensor product and m! (C⩾0,D⩾0) is the smallest full subcategory of C⊗D which
is closed under colimits and extensions and contains the objects m(C,D) for each C ∈ C⩾0 and D ∈ D⩾0.

Remark 1.10.

(1) The full subcategory Prt-rexst ⊂ Pr+st is closed under tensor products since m! (C⩾0,D⩾0) is presentable
if both C⩾0 and D⩾0 are presentable.

(2) An object in CAlg(Prt-rexst ) can be identified with a ttt-∞-category.

Proposition 1.11 (See [SAG] C.3.1.1). Let C and D be Grothendieck prestable ∞-categories. Then the
canonical map

θ : LFun(C,D)→ LFun(Sp(C),Sp(D))

is a fully faithful embedding, whose essential image consists of those functors Sp(C)→ Sp(D) which preserve
small colimits and are right t-exact (with respect to the canonical t-structure).

Proposition 1.12 (See [SAG] C.3.2.1). Let C and D be Grothendieck prestable ∞-categories and let f :
C→ D be a colimit-preserving functor. Then the following conditions are equivalent:

(1) The functor f is left exact.

(2) The functor f carries 0-truncated objects of C to 0-truncated objects of D.

(3) The induced map F : Sp(C)→ Sp(D) is left t-exact.

Corollary 1.13.

(1) The construction C 7→ (Sp(C),Sp(C)⩾0) determines a fully faithful embedding

Groth∞ ↪→ Pr+st

from the ∞-category of Grothendieck prestable ∞-categories to the ∞-category of cored stable ∞-
categories.

(2) A pair (C,C⩾0) belongs to the essential image of Groth∞ ↪→ Pr+st if and only if it forms an accessible
t-structure (C⩾0,C⩽0) which is compatible with filtered colimits and is right complete.

(3) Furthermore, the embedding Groth∞ ↪→ Pr+st is symmetric monoidal, hence induces a fully faithful
embedding

CAlg(Groth∞) ↪→ CAlg(Pr+st).

Definition 1.14 (Grothendieck t-structured stable∞-categories). We say a t-structured stable∞-category
(C,C≥0) ∈ Prt-rexst is Grothendieck if it lies in the essential image of the embedding Groth∞ ↪→ Prt-rexst , or
equivalently, if the t-structure on C is right complete and compatible with filtered colimits (see [SAG, Remark
C.3.1.5]).

Remark 1.15. By Proposition 3.7, we see that if (A⊗,A≥0) is Grothendieck, then for any R ∈ CAlg(A≥0),
the pair (ModR(A)⊗,ModR(A)≥0) ∈ CAlg(Prt-rexst ) is also Grothendieck.

Definition 1.16 (See [SAG] C.1.2.12). Let C be a prestable ∞-category which admits finite limits. We say
that an object X ∈ C is ∞-connective if τ⩽nX ≃ 0 for every integer n.
We say C is separated if every ∞-connective object of C is a zero object.
We say C is complete if it is a homotopy limit of the tower of ∞-categories:

· · · → τ⩽2C
τ⩽1−−→ τ⩽1C

τ⩽0−−→ τ⩽0C = C♡.

In other words, C is complete if it is Postnikov complete.
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Remark 1.17.

(1) If a prestable ∞-category C is complete, then it is separated.

(2) Let C be a stable ∞-category. Then C is separated if and only if C ≃ ∗.
Proposition 1.18. Let C be a Grothendieck prestable ∞-category. Then:

(1) The canonical t-structure (Sp(C)≥0,Sp(C)≤0) is hypercomplete if and only if C is separated.

(2) The canonical t-structure (Sp(C)≥0,Sp(C)≤0) is left complete if and only if C is complete.

Proof. (1) The "only if" direction is obvious. Now assume that C is separated and that X ∈ Sp(C) satisfies
τ≤iX = 0 for every integer i. We need to show that X = 0. Since Sp(C) is right complete, we have
X ≃ lim−→ τ≥−nX. However, each Σnτ≥−nX is ∞-connective as an object in C, so τ≥−nX = 0 by assumption,
which implies that X = 0.

(2) The "only if" direction is obvious. Now assume that C is complete. Given a tower T

...

X1

X X0

in Sp(C) such that {Xn} is a Postnikov tower in Sp(C), we need to show that X ≃ lim←−Xi if and only if X
is a Postnikov tower (see a similar argument in [HTT, Proposition 5.5.6.26]). Since Sp(C) is right complete,
we have that

Sp(C)
lim←− τ≥−n

−−−−−−→ lim←− Sp(C)≥−n

is an equivalence in PrR. Thus X ≃ lim←−Xi if and only if for each n ≥ 0 we have τ≥−nX ≃ lim←−i τ≥−nXi.
Also, the tower T is a Postnikov tower if and only if for each n ≥ 0 the following tower

...

τ≥−nX1

τ≥−nX τ≥−nX0

is a Postnikov tower. By the completeness of C, the proof is complete.

1.2 Dualizable additive ∞-categories

Definition 1.19 (See [Ram24a] Definition 1.22, 1.27). Let V⊗ ∈ CAlg(PrL) and M ∈ PrLV = ModV(Pr
L).

(1) An object x ∈ M is called V-atomic, or simply atomic if the base V is understood, if the V-linear
functor V

−⊗x−−−→M classifies an internal left adjoint, i.e. if

Map
M
(x,−) : M→ V

preserves small colimits and the canonical map

v ⊗Map
M
(x, y)→ Map

M
(x, v ⊗ y)

is an equivalence for all v ∈ V, y ∈M.
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(2) The M is said to be V-atomically generated if the smallest full V-submodule of M closed under colimits
and containing the atomics of M is M itself.

Proposition 1.20. Let M ∈ ModSp≥0
(PrL) = PrLad. Then an object x ∈M is Sp≥0-atomic if and only if it

is compact projective in M.

Proof. Because Sp⊗≥0 is a mode [see CSY21, §5], it only suffices to check the colimit-preserving property
of the internal hom functor by [Ram24a, Example 1.24]. Now we note that the corepresentable functor
MapM(x,−) : M → S is the composition of Map

M
(x,−) : M → Sp≥0 and Ω∞ : Sp≥0 → S. Since both M

and Sp≥0 are additive, the connective mapping spectrum functor

Map
M
(x,−) : M→ Sp≥0

preserves small colimits if and only if it preserves small sifted colimits. Therefore the result follows im-
mediately from [HA, Proposition 1.4.3.9] that Ω∞ : Sp≥0 → S is conservative and preserves small sifted
colimits.

Definition 1.21. Let PrL,⊗ad denote the symmetric monoidal∞-category of presentable additive∞-categories
with colimit-preserving morphisms and Lurie tensor product. We say a presentable additive ∞-category C

is dualizable if it is dualizable (see Appendix A.1) under Lurie tensor product.

We denote Prdad as the full subcategory of PrLad spanned by those dualizable presentable additive∞-categories,
Prdblad as the (non-full) subcategory of Prdad with the same objects but whose morphisms are internal left
adjoints, i.e. those left adjoints such that their right adjoints are colimit-preserving.

Proposition 1.22. Let C ∈ Prdad. Then C is a complete Grothendieck prestable ∞-category which satisfies
AB4*.

Proof.

1.3 Additive rigidity

[Ram24a][Ram24b][BS24][CSY21] We will compare our projective rigidity with rigidity in enriched context.

Definition 1.23 (See [Ram24b] Definition 4.34). Let V⊗ ∈ CAlg(PrL) and W ∈ CAlgV = CAlg(PrLV). We
say W is a rigid V-algebra, if the following hold:

(1) The W is a dualizable V-module.

(2) the multiplication map W⊗V W→W is an internal left adjoint in ModW⊗VW(PrL).

(3) The unit 1W ∈W is V-atomic.

Proposition 1.24 (See [Ram24b] Lemma 4.50). Let V⊗ ∈ CAlg(PrL) . Suppose W is a commutative
V-algebra, whose underlying V-module is atomically generated. In this case, W is rigid if and only if its
V-atomics and dualizables coincide.

Theorem 1.25. Let M ∈ PrLad. Then:

(1) The M is Sp≥0-atomically generated if and only if it is projectively generated.

(2) If M⊗ ∈ CAlg(PrLad), then M⊗ is Sp≥0-atomically generated and Sp≥0-rigid, if and only if, it is
projectively rigid in the sense of Definition 4.13.

Proof. The (1) follows immediately from Proposition 1.20.
The (2) follows by combining Proposition 1.20 and Proposition 1.24.

We will discuss more about projective rigidity in Sections 4.2 and 8.

Example 1.26. We list a collection of ttt-∞-categories whose connective part satisfies projective rigidity
in Example 8.20.
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2 Grothendieck abelian categories

An important technique for learning derived algebra theory is to reduce to the “π0" case, in the study of
E∞-rings and modules over them, after taking π0, we are dealing with the rings and modules in the classical
sense, since Sp♡ is the category of the abelian groups Ab. But in our setting, A♡ is an abelian category, our
goal in this section is to establish the theory of “rings” and “module” in A♡. previous [TV09][Ban12][Ban17]

Definition 2.1. Let Groth1 ⊂ PrLad,1 denote the full subcategory of presentable additive 1-categories spanned
by those abelian categories such that filtered colimits commute with finite limits in it. We call an object in
Groth1 a Grothendieck abelian category.

Remark 2.2. For a Grothendieck prestable category C ∈ Groth∞, the heart C♡ is a Grothendieck Abelian
category. However, the forgetful functor Groth∞ → Groth1 is not one-to-one but many-to-one, e.g Sp♡ =
D(Z)♡.

Example 2.3. The (light) Condensed Abelian Group CondAb and the full subcategory SolidZ are both
Grothendieck Abelian categories.

Remark 2.4. The Groth1 is closed under the Lurie tensor product on PrL by [SAG, Theorem C.5.4.16].
We call an object in CAlg(Groth1) a symmetric monoidal Grothendieck abelian category.

Throughout Section 2, we fix a symmetric monoidal Grothendieck abelian category A⊗ ∈ CAlg(Groth1).

2.1 Dualizable additive n-categories

Definition 2.5. Let B ∈ Groth1 be a Grothendieck abelian category.

(1) We say an object X ∈ B is 1-projective if it is an projective in the ordinary sense in an abelian category.

(2) We say B is 1-projectively generated if B is generated by a small set of compact 1-projective objects
under small colimits.

(3) If B ∈ CAlg(Groth1) is a symmetric monoidal Grothendieck abelian category, then we say B⊗ is 1-
projectively rigid if B is 1-projectively generated and the dualizable objects in B coincide with compact
1-projective objects.

Remark 2.6. We use the terminology “1-projective” to distinguish it from the “projective” in the sense of
[HTT, Definition 5.5.8.18] for an ∞-category. Generally they do not agree in an abelian 1-category [see
HTT, Example 5.5.8.21].

Definition 2.7. Let C be an n-category. We say an object X ∈ C is n-projective if the corepresentable
functor C→ S≤n−1 preserves geometric realizations.

Proposition 2.8. Let M ∈ ModAb(Pr
L) = PrLad,1 be an presentable additive 1-category. Then an object

x ∈M is Ab-atomic if and only if it is compact 1-projective in M.

Proof. It is parallel with Proposition 1.20.

2.2 Linear Grothendieck abelian categories

Definition 2.9. We denote the (2, 2)-category of A-linear Grothendieck abelian category with A-linear
functors by ModA(Groth1).

Example 2.10. Given an R ∈ Alg(A), the LModR(A) is an A-linear Grothendieck abelian category.
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2.3 Modules and algebras

Definition 2.11. Let R ∈ Alg(A).

(1) We say a left R-module M is finitely presented if M is a compact object in ModR(A).

(2) We say a left R-module M is (faithfully) flat if the relative tensor product functor (−) ⊗R M :
RModR(A)→ A is (conservative) left exact.

(3) We define an left ideal I of R as an left R-submodule of R.

Proposition 2.12. Let f : A→ B ∈ CAlg(A) be a faithfully flat map. Then

(1) For any A-module M , the map M ≃ M ⊗A A → M ⊗A B is monomorphic. In particular, A → B is
monomorphic.

(2) The Coker(f) is a flat A-module.

Proof. (1) Let N be the kernel of M →M ⊗A B. Considering the following diagram.

N N ⊗A B

M M ⊗A B

i i⊗AB

Then by the base change adjoint we conclude that the map N ⊗AB →M ⊗AB is zero. The faithful flatness
implies i = 0 and hence N = 0.
(2) It follows immediately from (1) and snake lemma.

Proposition 2.13. Suppose that A is 1-projectively generated and R ∈ CAlg(A). Then:

(1) Any R-module M can be written as a pushout in ModR(A) as the following form

P1 0

P2 M

where P1, P2 ∈ ModR(A) are 1-projective R-modules.

(2) An R-module M is finitely presented if and only if P1, P2 can be promoted to compact 1-projective
R-modules.

Proof.

Proposition 2.14. Suppose that A⊗ is 1-projectively rigid. Let R be in CAlg(A≥0). Then ModR(A)⊗ is
1-projectively rigid too.

Proof. Since the symmetric monoidal functor

A⊗ R⊗(−)−−−−→ ModR(A)⊗

preserves compact 1-projective objects and dualizable objects, we conclude that

(i) The unit R is dualizable in ModR(A).

(ii) If P ∈ A is compact 1-projective, then R⊗ P is dualizable in ModR(A) .
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So the full subcategory of dualizable objects ModR(A)d contains {R ⊗ X|X ∈ Acproj}. Then combining
Lemma 3.1(2) and Proposition A.10(2)(3), we get ModR(A)cproj ⊂ ModR(A)d. Finally, the fact that the
unit R is compact 1-projective implies the equality ModR(A)cproj = ModR(A)d.

The [Ste23, Prop. 2.2.22] proves Lazard’s theorem over commutative ring objects. We find the argument
there also works in noncommutative settings.

Theorem 2.15 (Lazard’s theorem). Suppose that A⊗ is 1-projectively rigid. Let R ∈ Alg(A) and M be a
left R-module of A. Then:

(1) If M is 1-projective, then M is flat.

(2) The M is compact 1-projective if and only if it is left dualizable in LModR(A).

(3) The M is flat if and only if it is a filtered colimit of compact 1-projective left R-modules.

Proof.
(1) Since flat modules are closed under small coproducts and retractions, we reduce to the case M = R⊗ P
where P ∈ Acproj is compact 1-projective. It becomes easy because (−) ⊗R (R ⊗ P ) ≃ (−) ⊗ P reduces to
the case R = 1, which follows from the dualizability of P in A.
(2) By Corollary A.14, we see that left dualizable objects are closed under finite coproducts and retracts.
We observe that every R⊗ P is left dualizable (given by P∨ ⊗R), which proves “only if” direction. For the
“if” direction, if M is left dualizable, then it follows from

MapLModR(A)(M,−) ≃ MapA(1, ∨M ⊗R −)

and compact 1-projectivity of the unit.
(3) It is a parallel argument with Theorem 4.18.

Proposition 2.16. Suppose that A⊗ is 1-projectively rigid. Let R ∈ Alg(A) and let M be a left R-module.
Then the following are equivalent:

(1) The M is a compact 1-projective left R-module.

(2) The M is a finitely presented and flat left R-module.

Proof. The (1)⇒ (2) is obvious. For (2)⇒ (1), by Lazard’s theorem M can be written as the filtered colimit
of a set of compact 1-projective left R-modules. Then the compactness implies M is the retraction of some
compact 1-projective module, and hence compact 1-projective too.

Definition 2.17. (1) We say a map R → S ∈ CAlg(A) is of finite presentation if S is a compact object
in CAlg(A)R/.

Proposition 2.18. Suppose that A is compactly generated. Then a map R → S ∈ CAlg(A) is of finite
presentation if and only if S can be written as a pushout in CAlg(A) as the following form

Sym∗
R(N) R

Sym∗
R(M) S

α

where M,N ∈ ModR(A)ω are compact R-modules and α is the natural augmentation. (Note that the ϕ here
is not necessarily induced by a map of N →M .)
Furthermore, if A is 1-projectively generated, then M,N can be chosen as compact 1-projective R-modules.

Proof. The proof is parallel with the proof of Proposition 5.15.
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Proposition 2.19. Let R → S ∈ CAlg(A) be an epimorphism of commutative ring objects. Then the
forgetful functor ModS(A)⊗ → ModS(A)⊗ is a symmetric monoidal embedding.

Proof. Since R→ S is an epimorphism is equivalent to that S is an idempotent commutative R-algebra, the
result follows immediately from [HA, Prop. 4.8.2.10].

Proposition 2.20. A faithfully flat epimorphism in CAlg(A) is an isomorphism.

Proof. The epimorphism implies the map R ⊗R S → S ⊗R S is an isomorphism, so by the fully faithful
flatness the R→ S is an isomorphism.

Definition 2.21. We say a map f : R → S ∈ CAlg(A) is an open immersion if f is finitely presented, flat
and epimorphic.

3 Flat and faithfully flat

We are inspired by equivalent conditions of the flatness over structured ring spectra appeared in [HA,
Theorem 7.2.2.15].

3.1 t-structure on the category of modules

Lemma 3.1. Let C
F

⇄
G

D be an adjoint pair of ∞-categories.

(1) Assume κ is a regular cardinal, C is κ-presentable, and D is locally small and admits small colimits. If
G is conservative and preserves small κ-filtered colimits, then D is κ-presentable. Furthermore, Dκ is
the smallest full subcategory generated by F (Cκ) under κ-small colimits and retractions. Consequently,
D is generated by the image of F under small colimits.

(2) (See [HA, Corollary 4.7.3.18]).
Assume D admits small filtered colimits and geometric realizations, and G preserves both. Also, assume
C is projectively generated (see [HTT, Definition 5.5.8.23]). If the functor G is conservative, then D is
projectively generated. An object D ∈ D is compact and projective if and only if there exists a compact
projective object C ∈ C such that D is a retract of F (C). Hence, D is generated by the image of F
under small colimits.

Proof. We first prove (1). Let D0 ⊂ D be the smallest full subcategory generated by F (Cκ) under finite
colimits and retractions. Then the inclusion D0 ⊂ D extends to a fully faithful embedding F2 : Indκ(D0) ↪→
D (by [HTT, p. 5.3.5.10]). Since F preserves small colimits, it admits a right adjoint H ([HTT, Proposition
5.5.1.9]). Thus, we have the following factorization of adjoint pairs:

C
F1

⇄
G1

Indκ(D0)
F2

⇄
G2

D

It will therefore suffice to show that the functor G2 is conservative. Let α : X → Y be a morphism in D

such that G2(α) is an equivalence. We aim to show that α is an equivalence. For this, since C is κ-compactly
generated, it will suffice to show that α induces a homotopy equivalence

θ : MapC (C,G(X))→ MapC (C,G(Y ))

for every κ-compact object C ∈ C. This map can be identified with

θ : MapIndκ(D0) (F1(C), G2(X))→ MapIndκ(D0) (F1(C), G2(Y ))

Our assumption that G2(α) is an equivalence guarantees that θ is a homotopy equivalence, as desired.

For (2), the argument is entirely parallel. See also [HA, Cor. 4.7.3.18].
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Remark 3.2. The conditions of (2) guarantee that D is locally small because it is monadic over C by the
Barr-Beck-Lurie theorem (see [HA, Thm. 4.7.3.5]).

Corollary 3.3. Let R ∈ Alg(A). Applying Lemma 3.1 to the adjoint pair A
R⊗−
⇄ LModR(A), we obtain:

(1) If A is κ-presentable for some regular cardinal κ, then so is LModR(A).

(2) LModR(A) is presentable.

(3) LModR(A) is generated by {R⊗X | X ∈ A} under small colimits.

Remark 3.4. By [HA, Proposition 7.1.1.4], LModR(A) is stable for any R ∈ Alg(A).

Definition 3.5. Let C be a stable ∞-category equipped with a t-structure. We say it is hypercomplete if
for an object X ∈ C, the condition τ≤nX = 0 for every integer n implies X = 0.

Example 3.6. Let X be a hypercomplete ∞-topos. Then the natural t-structure

(Shv(X,Sp)⊗,Shv(X,Sp)≥0)

developed in [SAG, Proposition 1.3.2.7] is hypercomplete by [SAG, Proposition 1.3.3.3].

Proposition 3.7. Let R be in Alg(A≥0). Then LModR(A) is a presentable stable ∞-category which admits
a natural accessible t-structure (LModR(A)≥0,LModR(A)≤0) satisfying the following properties:

(1) LModR(A)≥0 and LModR(A)≤0 are the inverse images of A≥0 and A≤0 under the projection θ :
LModR(A)→ A.

(2) The natural inclusion LModR(A≥0) ↪→ LModR(A) induces an equivalence LModR(A≥0)
∼−→ LModR(A)≥0.

(3) The functor τ≤n : A≥0 → A[0,n] induces an equivalence LModR(A)[0,n]
∼−→ LModτ≤nR(A[0,n]). In

particular, the π0 functor induces an equivalence LModR(A)♡
∼−→ LModπ0R(A

♡).

(4) If A is left (resp. right, resp. hyper) complete, then so is LModR(A).

(5) If the t-structure on A is compatible with filtered colimits, meaning A≤0 ⊂ A is closed under filtered
colimits, then so is the induced t-structure on LModR(A).

(6) If A≥0 is projectively generated, then so is LModR(A)≥0.

Proof. We first prove (1). It follows immediately from the definitions that the full subcategory LModR(A)≥0 ⊂
LModR(A) is closed under small colimits and extensions. Also, note that LModR(A)≥0 is presentable since
the following is a pullback square in PrL:

LModR(A)≥0 LModR(A)

A≥0 A

⌜

Using [HA, Prop. 1.4.4.11], we deduce the existence of an accessible t-structure

(LModR(A)≥0,LModR(A)′)

on LModR(A). To complete the proof, it will suffice to show that LModR(A)′ = LModR(A)≤0.

Suppose first that N ∈ LModR(A)′. Then the mapping space MapLModR(A)(M,N) is discrete for ev-
ery object M ∈ LModR(A)⩾0. In particular, for every connective object X ∈ A⩾0, the mapping space
MapLModR(A)(R⊗X,N) ≃ MapA(X, θ(N)) is discrete, so that θ(N) ∈ A⩽0, and thereforeN ∈ LModR(A)⩽0.
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Conversely, suppose that N ∈ LModR(A)⩽0. We wish to prove that N ∈ LModR(A)′. Let C denote the
full subcategory of LModR(A) spanned by those objects M ∈ LModR(A) for which the mapping space
MapLModR(A)(M,N) is discrete. We wish to prove that C contains LModR(A)≥0. Firstly, we have that
θ induces a functor LModR(A) → A⩾0 which is conservative and preserves small colimits; moreover, this
functor has a left adjoint Fr, given informally by the formula Fr(X) ≃ R ⊗ X. Using Lemma 3.1, we
conclude that LModR(A)≥0 is generated under small colimits by the essential image of Fr. Since C is stable
under colimits, it will suffice to show that C contains the essential image of Fr. Unwinding the definitions,
we are reduced to proving that the mapping space

MapLModR(A)(F (X), N) ≃ MapA(X, θ(N))

is discrete for every connective objectX in A≥0, which is equivalent to our assumption thatN ∈ LModR(A)⩽0.
This completes the proof of (1).

For (2), the proof follows directly from the definition.

For (3), we observe that we have a natural factorization:

LModR(A)[0,n]

LModR(A≥0) LModτ≤nR(A[0,n])

F0

F

It suffices to prove that F0 is fully faithful and essentially surjective. It is easy to see that F and F0 preserve
colimits. We wish to prove that, for a fixed N ∈ LModR(A)[0,n], the full subcategory D of LModR(A)≥0

spanned by those objects M for which the map

MapLModR(A)(M,N)→ MapLModτ≤nR(A[0,n])
(F (M), F (N))

is an equivalence. It is easy to see that D is stable under colimits and contains R ⊗ X for all X ∈ A≥0.
Lemma 3.1 shows that D = LModR(A)≥0. In particular, F0 is fully faithful.

It remains to show that F0 is essentially surjective. Since F0 is fully faithful and preserves small colimits,
the essential image of F0 is closed under small colimits. By applying Lemma Lemma 3.1 to A[0,n] ⇄
LModτ≤nR(A[0,n]), it will therefore suffice to show that every free left τ≤nR-module τ≤nR⊗Y where Y ∈
A[0,n] belongs to the essential image of F0, where ⊗ denotes the tensor product in A[0,n]. We now conclude
by observing that F (R⊗X) ≃ τ≤nR⊗τ≤nX.

The (4) and (5) are concluded by the fact that θ : LModR(A) → A is t-exact, conservative, and preserves
small colimits and limits.

The (6) is concluded by Lemma 3.1(2) applied to the adjoint pair A≥0

F

⇄
G

LModR(A)≥0.

Remark 3.8. See also a brief discussion in [AN21, Appendix].

Corollary 3.9. Let R ∈ AlgEk+1
(A≥0) be a connective Ek+1-algebra where 1 ≤ k ≤ ∞. Then the presentably

Ek-monoidal category LModR(A)⊗ → E⊗
k satisfies:

(1) The natural t-structure (LModR(A)≥0,LModR(A)≤0) is compatible with the monoidal structure.

(2) The natural inclusion LModR(A≥0)
⊗ ↪→ LModR(A)⊗ is an Ek-monoidal functor which induces an

equivalence LModR(A≥0)
⊗ ∼−→ LModR(A)⊗≥0 of Ek-monoidal categories.

(3) The symmetric monoidal functor τ⊗≤n : A⊗
≥0 → A⊗

[0,n] induces an equivalence LModR(A)⊗[0,n]
∼−→

LModτ≤nR(A[0,n])
⊗ of Ek-monoidal (n+ 1)-categories. In particular, the π0 functor induces an equiv-

alence of Ek-monoidal 1-categories LModR(A)♡,⊗
∼−→ LModπ0R(A

♡)⊗. Note that when k > 1, Ek-
algebras in A♡ are E∞-algebras, so LModπ0R(A

♡)⊗ is symmetric monoidal in this case.
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Remark 3.10. (1) When R ∈ CAlg(A≥0) is a connective E∞-ring object, LModR(A)⊗ becomes a new
presentably stably symmetric monoidal∞-category with an accessible t-structure (LModR(A)≥0,LModR(A)≤0)
that is compatible with the monoidal structure.

(2) Proposition 3.7 also applies to the right module category RModR(A) and the bimodule category
R BModS(A) when R,S are connective.

Convention 3.11. In the case where R ∈ CAlg(A) is commutative, we will simply denote LModR(A)⊗ by
ModR(A)⊗.

3.2 Flat modules and algebras

Definition 3.12 (connective case). Let R ∈ Alg(A≥0) be a connective E1-ring object.

(1) We say a left R-module M is flat if the relative tensor product functor (−) ⊗R M : RModR(A) → A

is t-exact.

(2) We say a leftR-moduleM is faithfully flat if the relative tensor product functor (−)⊗RM : RModR(A)→
A is t-exact and conservative.

(3) If R is E∞ and f : R→ S is a morphism in CAlg(A), we say f is (faithfully) flat if S is a (faithfully)
flat R-module.

Remark 3.13. If M is flat on a connective E1-ring object R ∈ Alg(A≥0), then M ≃ R ⊗R M itself is
connective.

Proposition 3.14. Let R ∈ Alg(A≥0) be a connective E1-ring object. Then:

(1) The full subcategory of flat modules LModR(A)fl ⊂ LModR(A) is closed under finite coproducts, retrac-
tions, and extensions. If the t-structure on A is compatible with filtered colimits, then LModR(A)fl ⊂
LModR(A) is furthermore closed under filtered colimits.

(2) If R ∈ CAlg(A≥0) is E∞, then the full subcategory of flat modules
ModR(A)fl,⊗ ⊂ ModR(A)⊗ contains the unit and is closed under tensor product and hence a symmetric
monoidal full subcategory.

(3) If R ∈ CAlg(A≥0) is E∞ and M ∈ ModR(A) is a dualizable R-module, then M is flat if and only if
both M and the dual M∨ are connective R-modules.

Proof.
(1) and (2) are obvious by definition of flatness.
(3) Assume that M is flat, then M is connective by the remark above. Since the

MapModR(A)(M
∨, N) ≃ MapModR(A)(R,M ⊗R N)

is contractible for any (−1)-truncated N , the M∨ is connective too.
Now assume both M and the dual M∨ are connective. Since M is connective, the tensor product (−)⊗RM
is right t-exact. So it suffices to check the left t-exactness of (−) ⊗R M . Let Q be a connective R-module
and N is be a (−1)-truncated R-module. Then the

MapModR(A)(Q⊗RM∨, N) ≃ MapModR(A)(Q,M ⊗R N)

is contractible. So the (−)⊗RM is indeed left t-exact.

Proposition 3.15. Assume that A is Grothendieck. Let R ∈ Alg(A≥0) be a connective E1-ring object and
M be a connective left R-module. Then the following conditions are equivalent:

(1) M is flat.
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(2) The tensor product functor (−) ⊗R M is left t-exact, meaning it sends the negative part to negative
part.

(3) The tensor product functor (−)⊗RM sends discrete objects to discrete objects.

Proof. The (1)⇔ (2) and (2)⇒ (3) are obvious. Now we claim that (3)⇒ (2).
Given a coconnective right R-module M ∈ RModR(A)≤0, we wish to show that N ⊗RM ∈ A≤0. Since A is
right complete, we have that M ≃ lim−→ τ≥−iM . Now we will prove that N ⊗R τ≥−nM ∈ A[−n,0] inductively.
The case n = 0 is true by the assumption. Now assume that for n− 1 ≥ 0 it is true, we need to show that
N ⊗R τ≥−nM ∈ A[−n,0], which is by observing that the first and third items in the following exact sequence

N ⊗R τ≥−(n−1)M → N ⊗R τ≥−nM → N ⊗R π−nM

belong to A[−n,0]. Since the t-structure is compatible with filtered colimits, we have that N ⊗R M ≃
lim−→N ⊗R τ≥−iM belong to A≤0.

Remark 3.16. If the (A⊗,A≥0) ∈ CAlg(Prt-rexst ) is Grothendieck, then a connective left R-module M for
some R ∈ Alg(A≥0) is flat if and only if the tensor product functor (−)⊗RM : RModR(A≥0)→ A≥0 is left
exact by Proposition 1.12.

Proposition 3.17. If R→ S ∈ Alg(A≥0) be a morphism of connective E1-ring objects, then

(1) The relative tensor product S ⊗R (−) : LModR(A) → LModS(A) sends (faithfully) flat modules to
(faithfully) flat modules.

(2) If S is flat as a left R-module, then the forgetful functor θ : LModS(A) → LModR(A) sends flat
modules to flat modules. If furthermore S is faithfully flat as a left R-module, then the forgetful functor
θ : LModS(A)→ LModR(A) preserves faithfully flat modules.

Proof.
(1)Let M ∈ LModR(A). We observe that (−)⊗S (S ⊗RM) ≃ (−)⊗RM .
(2) Given N ∈ LModS(A), we observe that (−)⊗R θ(N) ≃ (−)⊗R S ⊗S N .

Definition 3.18 (Nonconnective case). Let R ∈ Alg(A) and θ : LModR(A)→ LModτ≥0R(A) be the forgetful
functor.

(1) We say a left R-module M is flat if the counit map R⊗τ≥0Rτ≥0θ(M)→M with respect to the following
composite adjunction

LModτ≥0R(A)≥0 ⇄
τ≥0

LModτ≥0R(A) ⇄
θ
LModR(A)

is an equivalence and τ≥0θ(M) is flat over τ≥0R.

(2) We say a left R-module M is faithfully flat if it is flat over R and τ≥0θ(M) is faithfully flat over τ≥0R.

(3) If f : R→ S is a morphism in CAlg(A), we say f is (faithfully) flat if S is a (faithfully) flat R-module.

Remark 3.19. Let R ∈ Alg(A) be an E1-ring object. Then

(1) The full subcategory of flat modules LModR(A)fl ⊂ LModR(A) is closed under finite coproducts and
retractions. but under extension???

(2) If the t-structure on A is compatible with filtered colimits, then LModR(A)fl ⊂ LModR(A) is closed
under filtered colimits.

(3) If M is a flat left R-module, then M is faithfully flat implies that the tensor product functor (−)⊗RM
is conservative. The converse holds if A is Grothendieck and hypercomplete???(probably wrong)

Proposition 3.20. Let R→ S be a map in Alg(A), where R is not necessarily connective.
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(1) If τ≥0R→ τ≥0S is an equivalence, then the relative tensor product S⊗R (−) : LModR(A)→ LModS(A)

restricts to a categorical equivalence LModR(A)fl
∼−→ LModS(A)fl between full subcategories of flat

modules. (See [HA, Prop. 7.2.2.16] for the case of spectra.)

(2) If R ∈ CAlg(A), then the full subcategory of flat modules ModR(A)fl,⊗ ⊂ ModR(A)⊗ is closed under
tensor product and hence a full symmetric monoidal subcategory.

(3) If R→ S is a morphism in CAlg(A) such that τ≥0R→ τ≥0S is an equivalence, then ModR(A)fl,⊗
∼−→

ModS(A)fl,⊗ is an equivalence of symmetric monoidal categories.

Proof. The (2), (3) are conclusions of (1). So it suffices to prove (1) in the case when R = τ≥0S. Since R is
connective, the ∞-category LModR(A) admits a t-structure. Let F ′ denote the composite functor

LModR(A)≥0 ⊆ LModR(A)
F−→ LModS(A)

Then F ′ has a right adjoint, given by the composition G′ = τ≥0 ◦ G. Given M is a flat left R-module, we
observe that M → G′F ′(M) is equivalent by the flatness of M . Now we wish to prove F ′ preserves flatness,
i.e. F ′G′F ′(M)→ F ′(M) is equivalent, which is obvious. Then we wish to prove G′ preserves flatness too,
which is by definition of flatness in nonconnective case. Consequently, F ′ and G′ induce adjoint functors

LModflR (A)
F ′

⇆
G′

LModflS (A)

It now suffices to show that the unit and counit of the adjunction are equivalences. In other words, we must
show:
(i) For every flat left R-module M , the unit map M → G′F ′(M) is an equivalence, which has been done by
the argument above.
(ii) For every flat left S-module N , the counit map F ′G′(N) → N is an equivalence, which is by definition
of flatness in nonconnective case.

Proposition 3.21 (Nonconnective case). If R→ S ∈ Alg(A) be a morphism of E1-ring objects, then

(1) The relative tensor product S ⊗R (−) : LModR(A) → LModS(A) sends (faithfully) flat modules to
(faithfully) flat modules.

(2) If S is flat as a left R-module, then the forgetful functor θ : LModS(A) → LModR(A) sends flat
modules to flat modules. If furthermore S is faithfully flat as a left R-module, then the forgetful functor
θ : LModS(A)→ LModR(A) preserves faithfully flat modules.

Proof. The (1) is deduced by combination of Proposition 3.17 and Proposition 3.20.
For (2), we claim the following diagram is right adjointable,

LModτ≥0R(A) LModτ≥0S(A)

LModR(A) LModS(A)

because S ⊗τ≥0S (−) ≃ R⊗τ≥0R τ≥0S ⊗τ≥0S (−) by flatness of S over R. Then it reduces to the connective
case, which is Proposition 3.17.

Proposition 3.22.

(1) If f : R → S is a morphism in CAlg(A), then f is flat if and only if f≥0 : τ≥0R → τ≥0S is flat and
the following diagram

τ≥0R τ≥0S

R S
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is a pushout diagram in CAlg(A).

(2) If f : R → S is a flat map in CAlg(A≥0), then the following diagram is a pushout diagram in
CAlg(A≥0).

R S

τ≤nR τ≤nS

Hence τ≤nR→ τ≤nS is also flat for any n ≥ 0.

(3) Let f : R→ S be a (faithful) flat map in CAlg(A) and R→ A be another map in CAlg(A). Then the
map A→ A⊗R S given by the following pushout diagram is (faithful) flat.

R S

A A⊗R S

Proof.
(1) If f is flat, then we have S ≃ R ⊗τ≥0R τ≥0S by the flatness of S over R. If the converse is ture, then
R→ S is flat by Proposition 3.21(1).
(2) Since (−)⊗R S is t-exact, the following diagram is a pushout diagram in CAlg(A).

R S

τ≤nR τ≤nS

So τ≤nR→ τ≤nS is flat by Proposition 3.21(1).
(3) It follows immediately from Proposition 3.21.

Proposition 3.23. Given a diagram
A

B C
f h

g

in CAlg(A).

(1) where f, g are flat morphisms, then so is the composition h.

(2) If h is flat and g is faithfully flat, then f is flat.

Proof.
(1) It follows immediately from definition.
(2) Considering the following diagram

τ≥0A τ≥0B τ≥0C

A B C

τ≥0f τ≥0g

f g

in CAlg(A). Then the right square and outer square are pushouts by Proposition 3.22. The faithful flatness
of g implies the tensor product functor (−)⊗τ≥0B τ≥0C is conservative, which implies the left square is also
a pushout. So we reduce to the case when A,B,C are connective.
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Now given a coconnective A-module M ∈ ModA(A)≤0, we wish to show that N = B ⊗A M is also cocon-
nective. However the C ⊗B N is coconnective by assumption, so N is coconnective by faithful flatness of
g.

Corollary 3.24. Given a pushout diagram in CAlg(A)

A′ A

B′ B

ϕ

ψ

ϕ′

ψ′

where ψ is faithfully flat. If B is flat over A, then B′ is flat over A′.

Proof. Since ψ is faithfully flat, the morphism ψ′ is also faithfully flat. By virtue of Proposition 3.23(2), it
will suffice to show that the composition ψ′ ◦ ϕ ≃ ϕ ◦ψ is flat. This also follows from Proposition 3.23, since
ψ and ϕ are both flat.

Proposition 3.25. Let R ∈ Alg(A). Then:

(1) Let M ∈ LModR(A). If M is (faithfully) flat over R, then π0M ∈ LModπ0R(A
♡) is (faithfully) flat

over π0R in the sense of Definition 2.11.

(2) Assume that A is Grothendieck and hypercomplete. Let f : M → N be a map between flat left R-
modules. If π0f : π0M → π0B is an equivalence, then so is f :M → N .

(3) Let M ∈ LModR(A) be a flat left R-module. Then for any n ∈ Z, we have πn(R)⊗π0Rπ0M → πnM is
a natural equivalence in LModπ0R(A

♡).

(4) Assume that A is Grothendieck. If f : R → S is a faithfully flat morphism in CAlg(A), then the
cofib(f) is a flat R-module. The converse holds provided furthermore that A is hypercomplete.

Proof. For (1), we have that τ≥0M is flat over τ≥0R, so it suffices to show the case when R,M are connective.
Therefore by t-exactness we have the following factorization

RModτ≥0R(A) A

RModτ≥0R(A)≥0 A≥0

τ≥0

(−)⊗RM

τ≥0

(−)⊗RM

which implies that (−) ⊗R M : RModR(A≥0) → A≥0 is left exact. Now since π0 : A⊗
≥0 → (A♡)⊗ is a

symmetric monoidal functor preserving geometric realizations, we have the commutative diagram of relative
tensor product functors.

RModR(A≥0) A≥0

RModπ0R(A
♡) A♡

(−)⊗RM

(−)⊗π0Rπ0M

So we conclude that (−)⊗π0Rπ0M is left exact since the above horizontal functor preserves discrete objects.
For the faithful flat case, it follows directly from definition.
(2) By definition of nonconnective flatness, without loss of generalization we can assume that R, M and N
are connective. To do so it suffices to prove that R ⊗R f is an equivalence. Since both M and N are flat
and A is hypercomplete we may reduce to proving that π0(πnR ⊗R f) is an equivalence for all n ≥ 0. This
agrees with π0(πnR⊗R π0f), which is an equivalence by virtue of the fact that π0(f) is an equivalence.
(3) By definition we have that τ≥0M is flat over τ≥0R and R⊗τ≥0R τ≥0M ≃M . Then it follows by combining
the t-exactness of (−)⊗τ≥0R τ≥0M and the natural equivalence πn(R)⊗τ≥0R τ≥0M ≃ πn(R)⊗π0Rπ0M .
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(4) Due to Proposition 3.22(1), we may reduce to the case where R and S are connective. Let C denote the
cofib(f).

Now assume that C is flat over R. By Proposition 3.15, it suffices to show that C ⊗RM is discrete for any
discrete R-module M . Since R⊗RM and S⊗RM are discrete, we have that the C ⊗RM ∈ A≤1. Therefore
it suffices to show that πi(C⊗RM) = 0 when i ̸= 0, which is deduced by combining the Proposition 3.25(1),
Proposition 2.12 and the long exact sequence associated with R⊗RM → S ⊗RM → C ⊗RM .

For the converse implication, to see that S is flat over R, it suffices to show that S ⊗RM is discrete for any
discrete R-module M , which is obvious by the cofiber sequence R ⊗R M → S ⊗R M → C ⊗R M with the
first and third terms discrete. To see the faithfulness, due to the hypercompleteness, it is reduced to proving
M = 0 if M is discrete and S ⊗RM = 0, which is again by the cofiber sequence above.

4 Projective modules

Throughout Section 4, we assume that (*)

(1) The t-structure on A is right complete and compatible with filtered colimits, i.e., it is Grothendieck.

(2) The A≥0 is projectively generated, meaning A≥0 ≃ PΣ(A
cproj
≥0 ).

Remark 4.1.

(1) The assumption (1) implies that the t-structure is recovered by the Grothendieck prestable∞-category
A≥0 by Corollary 1.13 that Sp(A≥0) ≃ A.

(2) The assumptions (1) and (2) will imply that the t-structure on A is left complete by combining
Proposition 1.18 and [SAG, Remark C.1.5.9].

(3) Under the assumptions (1) and (2), for any R ∈ Alg(A≥0), the LModR(A)≥0 is projectively generated
and the induced t-structure on LModR(A) is right complete and compatible with filtered colimits too
by Proposition 3.7.

4.1 Projective modules

Proposition 4.2. The A is compactly generated. And hence for any R ∈ Alg(A), the LModR(A) is com-
pactly generated by Lemma 3.1.

Proof. We have A ≃ lim←−nA≥−n as an inverse limit diagram in PrRω by the assumption, so A ∈ PrRω too.

Proposition 4.3. Let R ∈ Alg(A≥0), and let C be the smallest idempotent complete stable subcategory of
LModR(A) which contains all compact projective left modules. Then C = LModR(A)c the full subcategory of
compact modules.

Proof. Since LModR(A) is right complete, the collection of connective cover functors {τ≥−n|n ≥ 0} is jointly
conservative. Therefore by Lemma 3.1 LModR(A) is generated by {R ⊗ Σ−nP |n ≥ 0, P ∈ A

cproj
≥0 } under

small colimits. Then the compact generation of A implies C = LModR(A)c.

Remark 4.4. We will see in Proposition 5.12 that under the stronger assumption of projective rigidity, the
“idempotent-complete” condition above is removable, i.e. LModR(A)c ⊂ LModR(A) is the smallest stable
subcategory which contains all compact projective left modules.
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Definition 4.5. Let R be in Alg(A≥0). We say P ∈ LModR(A)≥0 is a projective left R-module if it is a
projective object in LModR(A)≥0, meaning that the corepresentable functor

MapLModR(A)≥0
(P,−) : LModR(A)≥0 → S

preserves geometric realizations.

We introduce a stronger version of [HA, Lemma 1.3.3.11(2)]. In there, it requires that both C and C
′
are left

complete. However, we find the left complete condition on C is removable.

Lemma 4.6. Let C and C′ be stable ∞-categories equipped with t-structures. Then:

(1) If F : C≥0 → C
′

≥0 is a functor preserves finite colimits, then τ≤n ◦ F
∼−→ τ≤n ◦ F ◦ τ≤n is a natural

equivalence in Fun(C≥0,C
′

[0,n]) for any n ≥ 0.

(2) If C≥0 admits geometric realizations and C′ is left complete, then a functor F : C≥0 → C
′

≥0 preserves
finite colimits if and only if it preserves finite coproducts and geometric realizations.

Proof.
(1) Since F is right exact, it preserves suspension. Given X ∈ C≥0, then we have that the sequence

F (τ≥n+1X)→ F (X)→ F (τ≤nX)

is a cofiber sequence in C
′

≥0 and that F (τ≥n+1X) ∈ C
′

≥n+1. Taking τ≤n, we get the natural equivalence

τ≤nF (X)
∼−→ τ≤nF (τ≤nX).

(2) If F preserves finite coproducts and geometric realizations of simplicial objects, then F is right exact [HA,
Lemma 1.3.3.10]. Conversely, suppose that F is right exact; we wish to prove that F preserves geometric
realizations of simplicial objects. It will suffice to show that each composition

C≥0
F−→ C′

≥0

τ≤n−−→
(
C′
≥0

)
≤n

By the (1), in virtue of the right exactness of F , this functor is equivalent to the composition

C≥0
τ≤n−−→ (C≥0)≤n

τ≤n◦F−−−−→
(
C′
≥0

)
≤n .

It will therefore suffice to prove that τ≤n ◦ F preserves geometric realizations of simplicial objects, which
follows from [HA, Lemma 1.3.3.10] since both the source and target are equivalent to n-categories.

We also introduce a stronger version of [HA, Prop. 7.2.2.6]. In there, it requires that C is left complete,
which is removable too.

Proposition 4.7. Let C be a stable∞-category with a t-structure such that C≥0 admits geometric realizations.
Given P ∈ C≥0, then the following conditions are equivalent:

(1) The P is projective in C≥0.

(2) For any Q ∈ C≥0, the abelian group Ext1(P,Q) = 0.

(3) For any Q ∈ C≥0, the abelian group Exti(P,Q) = 0 when i > 0.

(4) The mapping spectrum functor Map
C
(P,−) : C→ Sp is t-exact.
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Proof. The implications (3)⇒ (2) and (3)⇔ (4) are obvious. The implication (2)⇒ (3) follows by replacing
Q by Q[i− 1].

We first show that (1)⇒ (2). Let f : C→ S be the functor corepresented by P . Let M• be a Čech nerve for
the morphism 0→ Q[1], so that Mn ≃ Qn ∈ C≥0. Then Q[1] can be identified with the geometric realization
|M•|. Since P is projective, f(Q[1]) is equivalent to the geometric realization |f (M•)|. We have a surjective
map ∗ ≃ π0f (M0)→ π0 |f (M•)|, so that π0f(Q[1]) = Ext1C(P,Q) = 0.

We now show that (3)⇒ (1). That C is stable implies that f is homotopic to a composition

C
F−→ Sp

Ω∞

−−→ S,

where F is an exact functor. Applying (3), we deduce that F is right t-exact (see [HA, Definition 1.3.3.1]).
The Lemma 4.6 implies that the induced map C≥0 → Sp≥0 preserves geometric realizations of simplicial

objects. Applying [HA, Proposition 1.4.3.9] that Sp
Ω∞

−−→ S preserves small sifted colimits, we conclude that
f | C≥0 preserves geometric realizations as well.

Proposition 4.8 (See [Ste23] Proposition 2.4.8). Let C be a projectively generated Grothendieck prestable
∞-category. Then

(1) The truncation functor H0 : C→ C♡ sends projective objects to 1-projective objects and compact objects
to compact objects.

(2) The 0-truncations of the compact projective objects of C provide a family of compact 1-projective gen-
erators for C♡.

(3) The functor h(π0) : h(C) → C♡ induced at the level of homotopy categories restricts to an equivalence
between the full subcategories of (compact) projective objects and (compact) 1-projective objects.

Proof. We first prove (1). The fact that π0 sends compact objects to compact objects follows directly from
the fact that the inclusion C♡ → C preserves filtered colimits. The fact that π0 sends projective objects to
1-projective objects follows from Proposition 4.7.

Item (2) follows directly from (1) together with the fact that π0 is a localization. It remains to establish (3).
We first prove fully faithfulness. Let X,Y be a pair of projective objects of C. Then the map MapC(X,Y )→
MapC♡ (π0(X), π0(Y )) induced by π0 is equivalent to the map η∗ : MapC(X,Y ) → MapC (X,π0(Y )) of
composition with the unit η : Y → π0(Y ). The fact that X is projective and η induces an equivalence on π0
implies that η∗ is an effective epimorphism. Its fiber is given by MapC (X, τ≥1(Y )) which is connected since
X is projective. We conclude that η∗ induces an equivalence on π0, and therefore h(π0) is fully faithful when
restricts on the full subcategory of projective objects.

It remains to prove the essential surjectivity. In other words, we have to show that every (compact) 1-
projective object of C♡ is the image under π0 of a (compact) projective object of C. We will establish the
case of compact projective objects, and the proof in the projective case being similar. Let Y be a compact
1-projective object of C♡. Applying (2) we may find a compact projective object X in C such that Y is a
retract of π0(X). Let r : π0(X)→ π0(X) be the induced retraction. The fully faithfulness part of (3) allows
us to lift r to an idempotent endomorphism ρ of X inside h(C). Let X ′ be a representative in C of the image
of ρ. Then X ′ is a direct summand of X (see similar argument in [HA, Lem. 1.2.4.6]) and therefore it is
compact projective. The proof finishes by observing that π0(X ′) = Im(r) = Y .

Remark 4.9. We did not use A in the above because the proposition does not require a monoidal structure.

Proposition 4.10. Let R be in Alg(A≥0) and P ∈ LModR(A)≥0. Then:

(1) The P is a projective R-module if and pnly if every map X → P in LModR(A)≥0 which induces an
epimorphism on π0 admits a section.

(2) If P is a projective R-module, then π0P ∈ LModπ0R(A
♡) is a 1-projective discrete π0R-module in the

sense for an abelian category.
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Proof.
(1) This is by equivalent conditions of Proposition 4.7 (1) and (2).
(2) Combining the (1) and the equivalence MapLModR(A)≥0

(P,M) ≃ MapLModπ0R(A♡)(π0P,M) for a discrete
π0R-module M , we win.

Corollary 4.11. Let R ∈ Alg(A≥0). Then the heart LModπ0R(A
♡) has enough projectives as an abelian

category.

Proposition 4.12. Let R be in Alg(A≥0) and P ∈ LModR(A)≥0. Then P is projective if and only if there
exists a small collection of compact projective modules {Pα} in LModR(A)≥0 such that P is a retraction of
⊕αPα.

Proof. Suppose first that P is projective. By the projective generation there exists an equivalence of left
R-modules

colimαMα
∼−→ P

where each Mα is compact projective. Then the induced map ⊕απ0Mα → π0P is epimorphic. Invoking
Proposition 4.7, we deduce that p admits a section (up to homotopy), so that P is a retract of M . To prove
the converse, we observe that the collection of projective left R-modules is stable under small coproducts
and retracts by Proposition 4.7.

4.2 Projective rigidity and Lazard’s theorem

Definition 4.13. We say a presentably symmetric monoidal Grothendieck prestable ∞-category C⊗ ∈
CAlg(Groth∞) is projectively rigid if it satisfies the following:

(1) The C is projectively generated.

(2) The Cd = Ccproj , i.e. the dualizable objects coincide with compact projective objects.

We also say a ttt-∞-category (B⊗,B≥0) is algebraic if B is Grothendieck (see Definition 1.14) and B⊗
≥0 is

projectively rigid. We will discuss more details about projective rigidity and algebraic ttt-∞-categories in
Section 8.

Remark 4.14.

(1) Warning: In general, (A≥0)
d ⊊ Ad∩A≥0 because the dual of an objectX ∈ Ad∩A≥0 is not necessarily

connective! However, that holds exactly when X is flat, see Proposition 3.14(3), which claims that
(A≥0)

d = Ad ∩Afl.

(2) Suppose that A⊗
≥0 is projectively rigid. Then the symmetric monoidal Grothendieck prestable ∞-

category A⊗
≥0 can be identified with the symmetric monoidal projective cocompletion PΣ(A

cproj
≥0 )⊗.

And the heart (A♡)⊗ is 1-projectively rigid.

(3) The ModR(Sp≥0)
⊗ is projectively rigid for any connective E∞-ring R, see [SAG, Prop. 2.9.1.5].

Proposition 4.15. Suppose that A⊗
≥0 is projectively rigid. Then:

(1) The A⊗ is compactly rigid, meaning the compact objects and dualizable objects in it coincide. Partic-
ularly we have A⊗ ∈ CAlg(PrLst,ω).

(2) Let R be in CAlg(A≥0). Then ModR(A≥0)
⊗ is projectively rigid too.

(3) Let R be in CAlg(A≥0). Then ModR(A)⊗ is compactly rigid too.
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Proof.
(1) Since A is right complete, the collection of connective cover functors {τ≥−n|n ≥ 0} is jointly conser-
vative. Therefore by Lemma 3.1, A is generated by {Σ−nP |n ≥ 0, P ∈ A

cproj
≥0 } under small colimits. By

Proposition A.10 (4), we have {Σ−nP |n ≥ 0, P ∈ A
cproj
≥0 } ⊂ Ad and hence Ac = Ad.

(2) Since the symmetric monoidal functor

A⊗
≥0

R⊗(−)−−−−→ ModR(A≥0)
⊗

preserves compact projective objects and dualizable objects, we conclude that

(i) The unit R is dualizable in ModR(A≥0).

(ii) The R⊗ P is dualizable in ModR(A≥0) if P ∈ A≥0 is compact projective.

So the full subcategory of dualizable objects ModR(A≥0)
d contains {R ⊗X|X ∈ A

cproj
≥0 }. Then combining

Lemma 3.1 (2) and Proposition A.10 (2)(3), we get ModR(A≥0)
cproj ⊂ ModR(A≥0)

d. And that the unit R
is compact projective implies the equality ModR(A≥0)

cproj = ModR(A≥0)
d.

(3) Apply the (1) and (2) to ModR(A)⊗, we win.

Proposition 4.16. Suppose that A⊗
≥0 is projectively rigid. Let R ∈ CAlg(A≥0) and M ∈ ModR(A)≥0. Then

M is compact projective if and only if it is dualizable in ModR(A)⊗ and flat.

Proof. This is directly by combining the projective rigidity and Proposition 3.14 (3).

Proposition 4.17. Suppose that A⊗
≥0 is projectively rigid. Let R ∈ Alg(A≥0) and M be a connective left

R-module. Then:

(1) If M is projective, then M is flat.

(2) The M is compact projective if and only if it is left dualizable in LModR(A≥0).

(3) The M is (compact) projective if and only if it is flat and π0M is (compact) 1-projective in LModπ0R(A
♡).

(4) Suppose that R ∈ Alg(A♡) is discrete. Then M is flat if and only if M is discrete and flat over π0R
in the sense of Definition 2.11.

Proof.
(1) Since flat modules are closed under small coproducts and retractions, we reduce to the case M = R⊗ P
where P ∈ A

cproj
≥0 . That is easy because (−) ⊗R (R ⊗ P ) ≃ (−) ⊗ P reduces to the case R = 1, which is

deduced by Proposition 4.16.
(2) By Corollary A.14, we see that left dualizable objects are closed under finite coproducts and retracts.
We observe that every R⊗ P is left dualizable (given by P∨ ⊗R), which proves “only if” direction. For the
“if” direction, if M is left dualizable, then it follows from

MapLModR(A≥0)
(M,−) ≃ MapA≥0

(1, ∨M ⊗R −)

and compact projectivity of the unit.
(3) By the (1) we have that every projective left R-module is flat. Secondly, the fact that π0 sends projective
objects to 1-projective objects was already observed in Proposition 4.10. This finishes the proof of the “only
if” direction.

Assume now that M is flat and π0M is (compact) 1-projective. Applying Proposition 4.8 we may find a
(compact) projective R-module M ′ and an isomorphism π0M

′ = π0M . The fact that M ′ is projective allows
us to lift this isomorphism to a map f :M ′ →M . We observe that f is an equivalence by Proposition 3.25(2).
(4) The “only if” direction follows from (1) and M ≃ R ⊗RM . For the “if” direction, given a discrete right
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R-module N , we wish to show that N ⊗RM is discrete too. Take a map f : P → N of right R-module such
that P is projective and f induces an epimorphism on π0. Then we have exact sequence

0→ π0 fib(f)→ π0P → π0N → 0

and hence fib(f) is discrete. Now tensoring with M , we get an exact sequence

0→ π0(fib(f)⊗RM)→ π0(P ⊗RM)→ π0(N ⊗RM)→ 0

by 1-flatness and the commutative diagram of relative tensor product functors.

RModR(A≥0) A≥0

RModπ0R(A
♡) A♡

π0

(−)⊗RM

π0

(−)⊗π0Rπ0M

Because P is also flat by (1), we see that π1(N ⊗RM) = 0. We actually have proved for any discrete right
R-module N has the property π1(N ⊗R M) = 0. Then by induction on n we get that πn(fib(f) ⊗R M) =
πn+1(N ⊗RM) = 0 for all n > 0, which implies N ⊗RM is discrete.

Theorem 4.18 (Lazard’s Theorem). Suppose that A⊗
≥0 is projectively rigid. Let R ∈ Alg(A≥0) and M ∈

LModR(A)≥0. Then M is a flat left R-module if and only it it is equivalent to a filtered colimit of compact
projective left R-modules.

Proof. We take the strategy in [Ste23, Prop. 2.2.22]. The “if” direction can be concluded by combining
Proposition 4.16 and Proposition 3.14 (1).
For the “only if" direction, assume now that M is flat. Let LMcp denote the full subcategory of LM =
LModR(A)≥0 spanned by compact projective objects and consider the functor F (−) : (LMcp)

op → S repre-
sented byM . We wish to show that this functor defines an ind-object of LMcp. Let (−)∨ : RMcp → (LMcp)

op

be the dualization equivalence introduced in Corollary A.13. We will prove that F ((−)∨) : RMcp → S defines
a pro-object of RMcp.

Let p : E → RM be the left fibration associated to the functor MapA≥0
(1,−⊗RM) : RM → S. Then the

base change of p to RMcp is the left fibration classifying F ((−)∨). We have to show that every finite diagram
G : I→ E×RM RMcp admits a left cone. The fact that M is flat implies that the functor

MapA≥0
(1,−⊗RM) : RM→ S

is left exact, and therefore E is cofiltered andG extends to a left coneG◁ : I◁ → E. LetN = (M,ρ : 1→ N ⊗RM)
be the value of G◁ at the cone point. To show that G extends to a left cone in E ×RM RMcp it is enough
to prove that N receives a map from an object in E×RM RMcp. This amounts to showing that there exists
a map N ′ → N from a compact projective right R-module N ′ with the property that ρ factors through
N ′ ⊗RM . This follows from the fact that 1 is compact projective in A≥0.

4.3 Modules over discrete algebras

Theorem 4.19. We have:

(1) For any discrete R ∈ Alg(A♡) there exists a (unique up to contractible choices) equivalence in Prt-rexst

D(LModπ0R(A
♡))

∼−→ LModR(A)

which induces the identity functor on the heart.
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(2) Assume that the A⊗
≥0 is projectively rigid. Then for any discrete commutative algebra R ∈ CAlg(A♡)

there exists a (unique up to contractible choices) equivalence in CAlg(Prt-rexst )

D(Modπ0R(A
♡))⊗

∼−→ ModR(A)⊗

which induces the identity functor on the heart, where the symmetric monoidal structure on left-hand
side is induced by projective model with tensor product of chain complexes.

Proof.
(1) Since we have PΣ(LModR(A≥0)

cproj) ≃ LModR(A≥0), the result follows from

LModR(A≥0)
cproj ≃ LModπ0R(A

♡)cproj

and that the inclusion LModπ0R(A
♡)cproj ↪→ D(LModπ0R(A

♡))≥0 induces an equivalence PΣ(LModπ0R(A
♡)cproj) ≃

D(LModπ0R(A
♡))≥0.

(2) By remark Remark 4.14(1), it suffices to show that D(Modπ0R(A
♡))⊗≥0 ≃ PΣ(Modπ0R(A

♡)cproj)⊗ is the
symmetric monoidal projective cocompletion [see HA, Prop. 4.8.1.10]. That is to show the following:

(a) The natural inclusion Modπ0R(A
♡)cproj ↪→ D(Modπ0R(A

♡))≥0 is a symmetric monoidal functor which
preserves finite coproducts.

(b) The D(Modπ0R(A
♡))⊗≥0 is presentably symmetric monoidal.

(c) The inclusion induces an equivalence PΣ(Modπ0R(A
♡)cproj) ≃ D(Modπ0R(A

♡))≥0.

The (a) and (c) follow directly from the construction of projective model on derived category. The (b) follows
from [HA, Prop. 1.3.5.21] and the explicit internal hom construction in D(Modπ0R(A

♡))

Map
D
(M∗, N∗)p =

∏
n∈Z

HomM (Mn, Nn+p)

for each integer p, where we denote D = D(Modπ0R(A
♡)) and M = Modπ0R(A

♡). We view Map
D
(M∗, N∗)∗

as a chain complex with values in M, with differential given by the formula

(df)(x) = d(f(x))− (−1)pf(dx)

for f ∈ MapD (M∗, N∗)p.

Remark 4.20. In fact, by our argument the uniqueness in above theorem can be promoted as which induces
the identity functor on compact 1-projective π0R-modules in the heart.

4.4 Cohn localizations of E∞-algebras

There is a notion of Cohn localization or Cohn localization [Coh71; Sch85] which forces not just elements
of the ring to become invertible but forces more general some maps between finitely generated projective
modules to become invertible, as the following.

Theorem 4.21 ([Sch85] Theorem 4.1). Let A be an associate ring. Let Σ be a set of morphisms between
finitely generated projective right A-modules. Then there are a ring AΣ and a morphism of rings fΣ : A −→
AΣ, called the universal localisation of A at Σ, such that

(1) fΣ is Σ-inverting, i.e. if α : P −→ Q belongs to Σ, then α ⊗A 1AΣ
: P ⊗A AΣ −→ Q ⊗A AΣ is an

isomorphism of right AΣ-modules, and

(2) fΣ is universal Σ-inverting, i.e. for any Σ-inverting ring homomorphism ψ : A −→ B, there is a
unique ring homomorphism ψ̄ : AΣ −→ B such that ψ̄fΣ = ψ. Moreover, the homomorphism fΣ is a
ring epimorphism and TorA1 (AΣ, AΣ) = 0.
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This theorem also works for commutative rings, which is the case we mainly care. See [Ang+20] for a relation
between Cohn localizations and epimorphisms between commutative rings.

Neeman constructed the Cohn localization in the derived category of a commutative ring in [Nee+06, §4].
That motivates us to give a higher categorical correspondence.

The Cohn localization is very useful in our abstract framework because most interesting cases are only
projectively generated but not freely generated, unless it is the module category over an E∞-ring spectrum.
Our main result is the following.

Theorem 4.22. Assume that A⊗
≥0 is projectively rigid. Let R ∈ CAlg(A≥0) and

S = {Pβ
fβ−→ Qβ}

be a set of morphisms between compact projective R-modules. Then there exists a Cohn localization R →
R[S−1] ∈ CAlg(A≥0) satisfying the following universal property:
For any B ∈ CAlg(A), the induced map

MapCAlg(A)(R[S
−1], B)→ MapCAlg(A)(R,B)

is a (−1)-truncated map whose image on π0 consists those maps R → B such that for each fβ ∈ S the
B ⊗R Pβ → B ⊗R Qβ is an equivalence of B-modules.

Remark 4.23. (1) See [Hoy20, §3] and [Man23, §3.4] for discussions in the case where Qβ = 1 for each
β, which is related to Moore objects in general settings.

(2) It is not hard to see that the Cohn localization is unique up to contractible choices.

Before the proof of theorem, we introduce some useful lemmas.

Lemma 4.24 (See [Ara25] B.5). Let C
p−→ B be a cocartesian fibration of ∞-categories. Let {Sb|b ∈ B} be

given collections of morphisms such that Sb ⊂ Fun(∆1,Cb) for each b ∈ B. We denote S =
⋃
b Sb. If for

any morphism s→ t ∈ B the cocartesian transformation Cs → Ct sends Ss into St, then the induced functor
q : D = C[S−1]→ B from the localization of C at S is a cocartesian fibration and canonical functor

C D

B

p q

preserves cocartesian edges and exhibits Db ≃ Cb[S
−1
b ] for each b ∈ B. And for any cocartesian fibration

E→ B, the composition induces a fully faithful embedding

FuncoCar
/B (D,E)→ FuncoCar

/B (C,E)

whose image consists of those cocartesian functors over B sending S to equivalences in E.

Remark 4.25. (1) Note that a cocartesian functor C→ E over B sends S to equivalences in E if and only
if the induced functor on each fiber Cb → Eb sends Sb to equivalences in Eb.

(2) The lemma above is a generalization of [HA, Prop. 2.2.1.9], which gives a construction in the case of
reflective localization.

Corollary 4.26. Let C⊗ be a symmetric monoidal ∞-category and S be a collection of morphisms in C

satisfying that f ⊗ g ∈ S if both f, g ∈ S. Then the localization D = C[S−1] inherits a natural symmetric
monoidal structure and the localization can be promoted to a symmetric monoidal functor C⊗ → D⊗ satisfying
the universal property that for any symmetric monoidal∞-category E⊗ the composition induces a fully faithful
embedding

Fun⊗/N(Fin*)
(D⊗,E⊗)→ Fun⊗/N(Fin*)

(C⊗,E⊗)

whose image consists of those symmetric monoidal functors sending S to equivalences in E.
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Lemma 4.27. Let C⊗ F⊗

−−→ D⊗ ∈ CAlg(PrL). Let G⊗ : D⊗ → C⊗ be the relative right adjoint of F⊗. If C
is generated by dualizables under small colimits and G is conservative and small-colimit-preserving, then the
G⊗ is symmetric monoidal monadic, i.e. there exist an R ∈ CAlg(C) and a symmetric monoidal equivalence
ModR(C)

⊗ ≃ D⊗ such that the following diagram is commutative.

ModR(C)
⊗ D⊗

C⊗

∼

G⊗

Proof. By [HA, Cor. 4.8.5.21], it suffices to show that G satisfies the projection formula, that is, for every
object C ∈ C and D ∈ D, the canonical map C⊗G(D)→ G(F (C)⊗D) is an equivalence. By the assumption,
it suffices to verify the case C is dualizable. In this case, for any M ∈ C we have

MapC(M,C ⊗G(D)) ≃ MapC (C∨ ⊗M,G(D)) ≃ MapD (F (C∨ ⊗M) , D)

≃ MapD (C∨ ⊗ F (M), D) ≃ MapD(F (M), C ⊗D) ≃ MapC(M,G(C ⊗D)).

That indicates the projection formula holds.

Proof of Theorem 4.22:
Let S1 ⊂ Fun(∆1,ModR(A≥0)) consists of morphisms {Xα ⊗R fβ |Xα ∈ ModR(A≥0)

cproj , fβ ∈ S}. Then
S1 is small and thereby generates a strongly saturated class S1 of small generation (see [HTT, §5.5.4] for
definition). Then the S1 ⊂ Fun(∆1,ModR(A≥0)) satisfies conditions in Corollary 4.26, thereby it produces a

symmetric monoidal localization ModR(A≥0)
⊗ F⊗

−−→ ModR(A≥0)[S
−1

1 ]⊗ = D⊗ such that F⊗ ∈ CAlg(PrL).
Since D ⊂ ModR(A≥0) closed under finite products, it lies in CAlg(PrLad) and F⊗ ∈ CAlg(PrLad).

Now we wish to show that F⊗ satisfies conditions in Lemma 4.27. It suffices to verify that D ⊂ ModR(A≥0)
closed under small colimits, i.e. S1-local objects are closed under small colimits. Unwinding the definition,
a connective R-module M is S1-local if and only if

MapModR(A≥0)
(Xα ⊗R Qβ ,M)→ MapModR(A≥0)

(Xα ⊗R Pβ ,M)

is equivalent for any Xα ⊗R fβ ∈ S1. However, this map can be identified with

MapModR(A≥0)
(Xα, Q

∨
β ⊗RM)→ MapModR(A≥0)

(Xα, P
∨
β ⊗RM).

So by the projective generation, M is S1-local if and only if f∨β ⊗RM : Q∨
β ⊗RM → P∨

β ⊗RM is equivalent
for each fβ ∈ S. That implies S1-local objects are closed under small colimits. So there exist an R[S−1] ∈
CAlg(A≥0)R/ and an equivalence ModR[S−1](A≥0)

⊗ ≃ D⊗ such that the following diagram is commutative.

ModR[S−1](A≥0)
⊗ D⊗

ModR(A≥0)
⊗

∼

G⊗

Now given B ∈ CAlg(A), we need to show that the induced map

MapCAlg(A)(R[S
−1], B)→ MapCAlg(A)(R,B)

is a (−1)-truncated map whose image on π0 consists those maps R → B such that for any β ∈ J the
B ⊗R Pβ → B ⊗R Qβ is an equivalence of B-modules. Without loss of generality, we can assume that B is
connective. By [HA, Cor. 4.8.5.21], we have the following Morita embedding,

CAlg(A≥0)→ CAlg(PrLad)A⊗
≥0
/
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therefore it suffices to show that the F⊗ induces a fully faithful embedding

Fun⊗,L/N(Fin*)
(ModR[S−1](A≥0)

⊗,ModB(A≥0)
⊗)→ Fun⊗,L/N(Fin*)

(ModR(A≥0)
⊗,ModB(A≥0)

⊗)

whose image consists of those functors sending S to equivalences in ModB(A≥0), where Fun⊗,L/N(Fin*)
denotes

symmetric monoidal functors which preserve small colimits. However, that is implied by Corollary 4.26.

□

Remark 4.28. The argument above works for a set S ⊂ Fun(∆1,Cd) of morphisms between dualizables
inside an arbitrary presentably symmetric monoidal∞-category C⊗ which is generated by dualizables under
small colimits.

Proposition 4.29. Let fS : R → R[S−1] ∈ CAlg(A≥0) be the Cohn localization at S in Theorem 4.22.
Then the map π0fS : π0R → π0(R[S

−1]) exhibits π0(R[S−1]) ≃ (π0R)[(π0S)
−1] as the Cohn localization of

π0R at π0S in the sense of Theorem 4.34, where π0S = {π0Pβ
π0fβ−−−→ π0Qβ |fβ ∈ S}.

Proof. It follows immediately from the universal property of the Cohn localization.

Proposition 4.30. Let fS : R→ R[S−1] be the Cohn localization at S in Theorem 4.22. Then:

(1) The R[S−1] is an idempotent commutative R-algebra.

(2) The fS is flat???

Proof.
(1) It suffices to show that the following diagram is a pushout in CAlg(A≥0),

R R[S−1]

R[S−1] R[S−1]

i.e. to show that fS is an (∞-categorical) epimorphism in CAlg(A≥0). That is implied by the description of
mapping spaces in Theorem 4.22.
(2) ???

Definition 4.31. We say a map A → B ∈ CAlg(A≥0) is a (finitary) Cohn localization if there exists a
(finite) set S of morphisms between compact projective R-modules such that B ≃ A[S−1].

Remark 4.32. Note that if S = {Pi
fi−→ Qi} is finite, then A[S−1] ≃ A[f−1] is equivalent to the Cohn

localization at the single element f =
⊕

i fi.

Proposition 4.33. Let A → B ∈ CAlg(A≥0) be a finitary Cohn localization. Then B is finitely presented
over A.

Proof. By the remark above, we can assume that S = {f} consists of a single element. Now given a filtered
colimit of connective commutative A-algebras lim−→α

Cα = C we need to show that the natural map

lim−→
α

MapCAlg(A≥0)A/
(B,Cα)→ MapCAlg(A≥0)A/

(B,C)

is an equivalence. By Proposition 4.30(1), each mapping space above is empty or a single point. If the
MapCAlg(A≥0)A/

(B,C) = ∅, then nothing needs to prove.

Now assume that MapCAlg(A≥0)A/
(B,C) ≃ {∗}, we wish to show that there exists an α such that MapCAlg(A≥0)A/

(B,Cα)

is not empty. By assumption, the natural map f ⊗A C is an equivalence, thereby cofib(f)⊗A C = 0. Since
cofib(f) is a compact A-module, there exists an α such that the natural map cofib(f) → cofib(f) ⊗A Cα is
zero. That implies cofib(f)⊗A Cα = 0 and we are done.
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4.5 Cohn localizations in an abelian category

Theorem 4.34. Let A⊗ be a 1-projectively rigid symmetric monoidal Grothendieck abelian category. Let
R ∈ CAlg(A) and

S = {Pβ
fβ−→ Qβ}

be a set of morphisms between compact 1-projective R-modules. Then there exists a Cohn localization R →
R[S−1] ∈ CAlg(A) satisfying the following universal property:
For any B ∈ CAlg(A), the induced map

HomCAlg(A)(R[S
−1], B)→ HomCAlg(A)(R,B)

is an injection whose image consists those maps R→ B such that for each fβ ∈ S the B ⊗R Pβ → B ⊗R Qβ
is an equivalence of B-modules.

Proof. The proof is parallel with the proof of Theorem 4.22. Also see Remark 4.28. We just need to replace
the Morita embedding CAlg(A≥0)→ CAlg(PrLad)A⊗

≥0
/ in the argument by

CAlg(A)→ CAlg(PrLad,1)A⊗/

to adapt the 1-categorical setting.

Proposition 4.35. Let fS : R→ R[S−1] be the Cohn localization at S in Theorem 4.34. Then:

(1) The R[S−1] is an idempotent commutative R-algebra.

(2) The fS is flat???

Proof.
(1) It suffices to show that the following diagram is a pushout in CAlg(A),

R R[S−1]

R[S−1] R[S−1]

i.e. to show that fS is an epimorphism in CAlg(A). That is implied by the description of the Hom set in
Theorem 4.34.
(2) ???

Definition 4.36. Let A⊗ be a 1-projectively rigid symmetric monoidal Grothendieck abelian category. We
say a map A→ B ∈ CAlg(A) is a (finitary) Cohn localization if there exists a (finite) set S = {Pβ

fβ−→ Qβ}
of morphisms between compact 1-projective R-modules such that B ≃ A[S−1].

Remark 4.37. Note that if S = {Pi
fi−→ Qi} is finite, then A[S−1] = A[f−1] can be written as the Cohn

localization at a single element f =
⊕

i fi.

Proposition 4.38. Let A⊗ be a 1-projectively rigid symmetric monoidal Grothendieck abelian category. Let
A→ B ∈ CAlg(A) be a finitary Cohn localization. Then B is finitely presented over A.

Proof. The proof is similar to Proposition 4.33 but we need to take a different strategy because the kernel
is not preserved by base change.

Let A⊗ = D(A)⊗. By Theorem 4.19 we have that A♡,⊗ ≃ A⊗ and A
cproj
≥0 = Acproj . Let A′[S−1] be the

(higher) Cohn localization at S in the sense of Theorem 4.22. Then A′[S−1] is compact in CAlg(A≥0)A/
by Proposition 4.33. Therefore π0A

′[S−1] is compact in CAlg(A)A/. However by Proposition 4.29 the
A[S−1] = π0A

′[S−1]. We are done.
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Proposition 4.39. Let A⊗ be a 1-projectively rigid symmetric monoidal Grothendieck abelian category and
A→ B ∈ CAlg(A) be a map of finite presentation. If A→ B is epimorphic in A and the kernel I satisfies
that I = I2, then there exists a morphism f between compact projective A-modules such that A→ B ≃ A[f−1]
is a principle Cohn localization??

5 Finiteness properties

Throughout Section 5, we assume that A is Grothendieck and that A≥0 ∈ PrLω .

5.1 Perfect and almost perfect modules

Definition 5.1. Let R ∈ Alg(A). We say a left R-module M is perfect if it is compact in LModR(A).

Proposition 5.2. Let R ∈ Alg(A≥0) and M be a left R-module. If M is perfect, then M is bounded-below.

Proof. By the right completeness we have M ≃ lim−→ τ≥−nM , then the compactness of M implies that M is
a retract of τ≥−nM for some n.

Definition 5.3. Let C be a presentable∞-category. We will say an object C ∈ C is almost compact if τ≤nC
is a compact object of τ≤nC for all n ≥ 0.

Remark 5.4. Let C be a compactly generated ∞-category. Then every compact object of C is almost
compact by [HTT, Corollary 5.5.7.4].

Definition 5.5. Let R ∈ Alg(A≥0) be a connective E1-ring object. We will say a left R-module M is almost
perfect if there exists an integer k such that M ∈ LModR(A)≥k and is almost compact as an object of
LModR(A)≥k.

We let LModR(A)aperf ⊂ LModR(A) denote the full subcategory spanned by the almost perfect left R-
modules.

Proposition 5.6. Let R ∈ Alg(A≥0). Then:

(1) The full subcategory LModR(A)aperf ⊆ LModR(A) is closed under translations and finite colimits, and
is therefore a stable subcategory of LModR(A).

(2) The full subcategory LModR(A)aperf ⊆ LModR(A) is closed under the formation of retracts.

(3) Every perfect left R-module is almost perfect.

(4) The full subcategory LModR(A)aperf≥0 ⊆ LModR(A) is closed under the formation of geometric realiza-
tions of simplicial objects.

Proof. Proof. Assertions (1) and (2) are obvious, and (3) follows from Remark 5.4. To prove (4), it suffices
to show that the collection of compact objects of LModR(A)[0,n] is closed under geometric realizations, which
follows from [HA, Lemma 1.3.3.10].

Proposition 5.7. Assume that A≥0 is projectively generated. Let R ∈ Alg(A≥0) and M ∈ LModR(A)aperf≥0

be a left R-module which is connective and almost perfect. Then M can be obtained as the geometric realiza-
tion of a simplicial left R-module P• such that each Pn is a compact projective left R-module in LModR(A)≥0.

Proof. We mimic the proof in [HA, Prop. 7.2.4.11] and carefully replace “free” by “projective”. In view of
∞-categorical Dold-Kan correspondence, it will suffice to show that M can be obtained as the colimit of a
sequence

D(0)
f1−→ D(1)

f2−→ D(2)→ . . .
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where each cofib(fn)[−n] is a compact projective left R-module; here we agree by convention that f0 denotes
the zero map 0→ D(0). The construction goes by induction. Suppose that the diagram

D(0)→ . . .→ D(n)
g−→M

has already been constructed, and that N = fib(g) is n-connective. Part (1) of Proposition 5.6 implies that
N is almost perfect, so that the bottom πnN is a compact object in the category of left π0R-modules. It
follows that there exists a map β : Q[n] → N , where Q is a compact projective left R-module because the
LModR(A)≥0 is projectively generated. And β induces a surjection π0Q → πnN . We now define D(n + 1)

to be the cofiber of the composite map Q(n)
β−→ N → D(n), and construct a diagram

D(0)→ . . .→ D(n)→ D(n+ 1)
g′−→M

Using the octahedral axiom of triangulated category, we obtain a fiber sequence

Q[n]→ fib(g)→ fib(g′)

and the associated long exact sequence in A♡ proves that fib(g′) is (n + 1)-connective. In particular, we
conclude that for a fixed m ≥ 0, the maps πmD(n)→ πmM are isomorphisms for n≫ 0, so that the natural
map lim−→D(n)→M is an equivalence of left R-modules by the left completeness, as desired.

Proposition 5.8. Assume that A⊗
≥0 is projectively rigid. Let R ∈ Alg(A≥0) and let M be a connective left

R-module. Then the following are equivalent:

(1) The M is a compact projective left R-module.

(2) The M is a perfect and flat left R-module.

(3) The M is a almost perfect and flat left R-module.

(4) The M is a flat left R-module and π0M is finitely presented over π0R.

Proof. The (1)⇒ (2), (2)⇒ (3) and (3)⇒ (4) are obvious. For (4)⇒ (1), by Proposition 2.16, we conclude
that π0M is compact 1-projective over π0R. Then by Proposition 4.17, we get that M is a compact projective
left R-module.

Definition 5.9. Let R ∈ Alg(A≥0). We will say a left R-module M has Tor-amplitude ≤ n if, for every
discrete right R-module N , the πi(N ⊗RM) vanish for i > n. We will say M is of finite Tor-amplitude if it
has Tor-amplitude ≤ n for some integer n.

Remark 5.10.

(1) In view of Proposition 3.15, a connective left R-module M has Tor-amplitude ≤ 0 if and only if M is
flat.

(2) Assume that A is hypercomplete. Then a connective left R-module M has Tor-amplitude ≤ −1 if and
only if M = 0.

Proposition 5.11. Assume that A⊗
≥0 is projectively rigid. Let R ∈ Alg(A≥0). Then:

(1) If M is a left R-module of Tor-amplitude ≤ n, then M [k] has Tor-amplitude ≤ n+ k.

(2) Let
M ′ →M →M ′′

be a fiber sequence of left R-modules. If M ′ and M ′′ have Tor-amplitude ≤ n, then so does M.

(3) Let M be a left R-module of Tor-amplitude ≤ n. Then any retract of M has Tor-amplitude ≤ n.
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(4) Let M be an almost perfect left module over R. Then M is perfect if and only if M has finite Tor-
amplitude.

(5) Let M be a left module over R having Tor-amplitude ≤ n. Then for every N ∈ RModR(A)≤0, the
πi (N ⊗RM) vanishes for each i > n.

Proof. We mimic the proof in [HA, Prop. 7.2.4.23] but carefully replace “free” by “projective”. The first three
assertions follow immediately from the exactness of the functor N 7→ N ⊗RM . It follows that the collection
left R-modules of finite Tor-amplitude is stable under retracts and finite colimits and desuspensions, and
contains all compact projective left R-modules. This proves the “only if" direction of (4) by Proposition 4.3.
For the converse, let us suppose that M is almost perfect and of finite Tor-amplitude. We wish to show
that M is perfect. We first apply (1) to reduce to the case where M is connective. The proof now goes
by induction on the Tor-amplitude n of M . If n = 0, then M is flat and we may conclude by applying
Proposition 5.8. We may therefore assume n > 0.

Since M is almost perfect, there exists a compact projective left R-module P and a fiber sequence

M ′ → P
f−→M

where f induces an epimorphism on π0. To prove that M is perfect, it will suffice to show that P and M ′ are
perfect. It is clear that P is perfect, and it follows from Proposition 5.6 that M ′ is almost perfect. Moreover,
since π0f is surjective, M ′ is connective. We will show that M ′ is of Tor-amplitude ≤ n − 1; the inductive
hypothesis will then imply that M is perfect, and the proof will be complete.

Let N be a discrete right R-module. We wish to prove that πk(N ⊗RM ′) ≃ 0 for k ≥ n. Since the functor
N ⊗R • is exact, we obtain for each k an exact sequence

πk+1(N ⊗RM)→ πk(N ⊗RM ′)→ πk(N ⊗R P )

The left entry vanishes in virtue of our assumption that M has Tor-amplitude ≤ n. We now complete the
proof of (4) by observing that πk (N ⊗R P ) vanishes because N is discrete and P is flat and k ≥ n > 0.

We now prove (5). Assume that M has Tor-amplitude ≤ m. Let N ∈ RModR(A)≤0; we wish to prove that
πi(N ⊗R M) ≃ 0 for i > n. Since N ≃ lim

−→
τ≥−mN , it will suffice to prove the vanishing after replacing N

by τ≥−mN for every integer m. We may therefore assume that N ∈ RModR(A)[−m,0] for some m ≥ 0. We
proceed by induction on m. When m = 0, the desired result follows immediately from our assumption on
M . If m > 0, we have a fiber sequence

τ≥1−mN → N → (π−mN) [−m]

hence an exact sequence

πi ((τ≥1−mN)⊗RM)→ πi (N ⊗RM)→ πi+m (π−mN ⊗RM)

If i > n, then the first group vanishes by the inductive hypothesis, and the third by virtue of our assumption
that M has Tor-amplitude ≤ n.

Proposition 5.12 (See [HA] Remark 7.2.4.24 for the case of spectra).
Assume that A⊗

≥0 is projectively rigid. Let R ∈ Alg(A≥0), and let C be the smallest stable subcategory of
LModR(A) which contains all compact projective modules. Then C = LModperf

R (A).

Proof. The inclusion C ⊆ LModperfR (A) is obvious. To prove the converse, we must show that every object
M ∈ LModperfR (A) belongs to C. Invoking Proposition 5.2, we may reduce to the case where M is connective.
We then work by induction on the (necessarily finite) Tor-amplitude of M . If M is of Tor-amplitude ≤ 0,
then M is flat and the desired result follows from Proposition 5.8. In the general case, we choose a compact
projective R-module P and a map f : P → M which induces a surjection π0P → π0M . We may conclude
that that fiber K of f is a connective perfect module of smaller Tor-amplitude than that of M , so that K ∈ C

by the inductive hypothesis. Since P ∈ C and C is stable under the formation of cofibers, we conclude that
M ∈ C as desired.
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5.2 Finite presentation and almost of finite presentation

Definition 5.13. Let f : A→ B be a map in CAlg(A≥0).

(1) We say f : A → B is locally of finite presentation (or finitely presented) if B is a compact object in
CAlg(A≥0)A/.

(2) We say f : A→ B is almost of finite presentation if τ≤nB is a compact object in CAlg(A[0,n])τ≤nA/.

Remark 5.14. Suppose given a commutative diagram in CAlg(A≥0)

A

B C

where B is of locally of finite presentation over A. Then C is locally of finite presentation over B if and only
if C is locally of finite presentation over A. This follows immediately from [HTT, Proposition 5.4.5.15].

Proposition 5.15. Suppose further that A≥0 is projectively generated. Let f : A → B ∈ CAlg(A≥0) be a
map of finite presentation. Then there exists compact projective A-modules M,N and a diagram

Sym∗
A(N) A

Sym∗
A(M) B

α

ϕ

such that the map B′ → B induces an isomorphism on π0, where B′ is the pushout of above diagram in
CAlg(A≥0) and α is the natural augmentation. (Beware that the ϕ here is not necessarily induced by a map
of modules N →M).

Proof. Firstly, by Corollary 4.11 there exists a set of compact projective A-modules {Pα|α ∈ I} and a
map P = ⊕αPα → π0B of A-modules which induces an epimorphism on π0. Then there exists a lifting of
A-module map

B

P π0B

by Proposition 4.10. This lifting induces an A-algebra map Sym∗
A(P )→ B, which induces an epimorphism

on π0 (as objects in A♡) by our construction. Since f : A→ B is of finite presentation and A is Grothendieck,
the π0B is a compact object in CAlg(Modπ0A(A

♡)). That implies there exists finite collection {Pi} such
that the composition Sym∗

A(⊕iPi)→ Sym∗
A(P )→ B induces an epimorphism on π0, by taking the filtration

of images of π0 Sym∗
A(⊕j∈JPj) → π0B where J ⊂ I is a finite subset. We take M = ⊕iPi and N ′ =

fib(Sym∗
A(M) → B), then N ′ is a connective A-module by our construction. By similar argument as

previous, there exists a set of compact projective A-modules {Qα|α ∈ I2} and a map Q = ⊕αQα → N ′

of A-modules which induces an epimorphism on π0. Then there exists finite collection {Qi} such that the
induced map (⊕iQi) ⊗A Sym∗

A(M) → N ′ of Sym∗
A(M)-modules induces an epimorphism on π0, by taking

the filtered diagram of π0 Sym∗
A(M)/ Imπ0(⊕iQi ⊗A Sym∗

A(M)) → π0B where J2 ⊂ I2 is a finite subset.
Take N = ⊕iQi, we are done.

6 Faithful and descendable algebras

6.1 Faithful algebras

Definition 6.1. Let f : R→ S ∈ Alg(A).
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(1) We say f is left faithful if the tensor product functor f! = S ⊗R (−) : LModR(A) → LModS(A) is
conservative.

(2) We say f is bounded left faithful if f ∈ Alg(A≥0) and the tensor product functor f! = S ⊗R (−) :
LModR(A)− → LModS(A)− is conservative when restricting on bounded below modules.

Proposition 6.2. Let η : A → M ∈ Der and α : Ã → A be the induced square-zero extension in CAlg(A)
(see Definition 7.4). Then the α is faithful.

Proof. We consider the following pullback diagram in CAlg(A), and hence also a pullback diagram in
ModÃ(A).

Ã A

A A⊕M

α

α

δ

δ0

Now given an Ã-module X such that X ⊗Ã A = 0, we wish to show that X = 0 too. Because the following
diagram is pullback in ModÃ(A),

X = X ⊗Ã Ã X ⊗Ã A = 0

0 = X ⊗Ã A X ⊗Ã (A⊕M) = 0

we get X = 0.

Remark 6.3. In fact, any square-zero extension α : Ã→ A in CAlg(A) is descendable. We will see that in
Corollary 6.14.

Definition 6.4. Let α : Ã→ A be a map in Alg(A≥0). We say α is a nilpotent thickening if the I = Ker(π0α)

is a nilpotent ideal of π0Ã (i.e. In = 0 for some n ≥ 1).

Theorem 6.5 (Nakayama lemma). Assume that A is hypercomplete. Let α : Ã→ A be a nilpotent thickening
in Alg(A≥0). Then f is both left and right bounded faithful.

Proof. Let I denote the Ker(π0α). Suppose that M ∈ LModÃ(A)− is a bounded below module such that
A ⊗Ã M = 0. We wish to show M = 0. Now suppose that M ̸= 0, without loss of generalization, we can
assume that M is connective and π0M ̸= 0. Then π0A⊗π0Ã

π0M ≃ τ≤0(A⊗ÃM) = 0 where ⊗ denotes the
tensor product in the heart. Therefore I · π0M = π0M . However I is nilpotent so π0M = 0, which leads to
a contradiction.

Remark 6.6. In general, a nilpotent thickening is not faithful, and hence not descendable. A basic counter-
example is the truncation map S→ HZ of E∞-ring spectra, which is a nilpotent thickening but not faithful.
Indeed, given a prime p and a natural number n, consider the spectrum K(n) of the corresponding Morava
K-theory. Then we have H∗(K(n)) = 0, while π∗(K(n)) ̸= 0 (see [Rud98, Chap. IX.7.27]). That means the
base change functor

Sp ≃ ModS(Sp)→ ModHZ(Sp) ≃ D(Z)

is not conservative.

6.2 Descendable algebras

Now let us recollect the notion of descendable algebras.

Definition 6.7. Let C⊗ ∈ CAlg(PrLst) and I ⊂ C be a full subcategory. We say I is a thick ideal of C if I ⊂ C

is a stable subcategory, closed under retractions and the following condition holds:
For any x ∈ C and y ∈ I we have x⊗ y ∈ I.
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Definition 6.8 (See [Mat16] Definition 3.18). Let f : R → S ∈ CAlg(A). We say f is descendable if the
smallest thick ideal of ModR(A) such that contains S is ModR(A) itself.

Proposition 6.9 (See [Mat16] 3.19). Given a map f : A → B in CAlg(A). If f is descendable, then f is
faithful.

Definition 6.10. Let f : A→ B ∈ CAlg(A). We define the augmented cosimplical object

B• : ∆+ → CAlg(A)A/

be the Cech nerve in (CAlg(A)A/)
op.

Proposition 6.11 (See [Mat16] 3.20). Let f : A → B ∈ CAlg(A). Then the following conditions are
equivalent:

(1) The A→ B is descendable.

(2) The B• is a ∆-limit diagram in Pro(ModA(A)).

Proof. We first prove that (1) ⇒ (2). Let C denote the full subcategory of ModA(A) spanned by those
objects M for which the canonical map θM :M ⊗A A→M ⊗A B• is an equivalence in Pro(ModA(A)). By
Corollary B.13, we see that the C is a thick ideal of ModA(A). It will suffice to show that B ∈ C. This is
clear, since B ⊗A B• can be identified with the split cosimplicial object B•+1.

Now suppose that (2) is satisfied. Let D denote the smallest thick ideal of ModA(A) which contains B. Then
B• is a cosimplicial object of D and each term Totn(B/A) in the tower Tot•(B/A) is in D too. Assumption
(2) implies that A ≃ lim←−n Tot

n(B/A) in Pro(ModA(A)). However, the A is cocompact in Pro(ModA(A)), so
A is equivalent to a retract of Totn(B/A) for some integer n, so that A ∈ D. That implies D = ModA(A).

Remark 6.12. We see that the descendable condition is stronger than that the B• is a ∆-limit merely in
ModA(A).

Corollary 6.13. Let f : A→ B ∈ CAlg(A). Then A→ B is descendable if and only if A as an A-module
can be obtained as a retract of a finite colimit of a diagram of A-modules consisting of objects, each of which
admits the structure of a module over B.

Corollary 6.14. Let η : A → M ∈ Der and α : Ã → A be the induced square-zero extension in CAlg(A).
Then the α is descendable.

Proposition 6.15 (See [Mat16] 3.21). Let f : R→ S be a descendable morphism in CAlg(A) and R→ A be
another map in CAlg(A). Then the map A→ A⊗RS given by the following pushout diagram is descendable.

R S

A A⊗R S

Proposition 6.16 (See [Mat16] 3.24). Let A→ B → C be maps in CAlg(A).

(1) If A→ B and B → C admit descent, so does A→ C.

(2) If A→ C admits descent, so does A→ B.

Lemma 6.17 (See [SAG] D.3.3.6). Let n be a nonnegative integer, let J be a filtered partially ordered set
of cardinality ⩽ ℵn, and let {Xj}j∈J be a diagram of spaces indexed by Jop. If each of the spaces Xj is
m-connective for some integer m, then the inverse limit lim←−j∈J Xj is (m− n)-connective.

Lemma 6.18. Suppose that A is Grothendieck and that A⊗
≥0 is projectively rigid. Let A ∈ Alg(A≥0), let M

be a flat left A-module, and let N be a connective left A-module. Assume that π0M is an ℵn-compact object
of the category of discrete π0A-modules for some n ≥ 0. Then ExtmA (M,N) ≃ 0 for m > n.
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Proof. The following argument is parallel with [SAG, Lem. D.3.3.7]. Let us identify N with the limit of its
Postnikov tower

· · · → τ⩽2N → τ⩽1N → τ⩽0N,

so that we have a Milnor exact sequence

0→ lim1
{
Extm−1

A (M, τ⩽kN)
}
→ ExtmA (M,N)→ lim←−

k

{ExtmA (M, τ⩽kN)} → 0.

It will therefore suffice to show that the abelian groups lim1
{
Extm−1

A (M, τ⩽kN)
}

and lim←−k {Ext
m
A (M, τ⩽kN)}

are trivial for m > n. To prove this, we will show that the maps

Extm−1
A (M, τ⩽kN)→ Extm−1

A (M, τ⩽k−1N)

are surjective for k ⩾ 1, and that the groups Extm (M, τ⩽kN) vanish for all k ≥ 0. Using the exact sequences

Extm−1
A (M, τ⩽kN)→ Extm−1

A (M, τ⩽k−1N)→ Extm+k
A (M,πkN)→

ExtmA (M, τ⩽kN)→ ExtmA (M, τ⩽k−1N)→ Extm+1+k
A (M,πkN)

we are reduced to proving that the groups Extm+k
A (M,πkN) vanish for all k ≥ 0. Replacingm bym+k andN

by πkN , we can further reduce to the case where N is discrete. In this case, we have a canonical isomorphism
ExtmA (M,N) ≃ Extmπ0A (π0A⊗AM,N). We may therefore replace A by π0A (and M by π0A ⊗A M) and
thereby reduce to the case where A is discrete. Since M is flat over A, it follows that M is also discrete.

Since M is flat over A, it can be written as the colimit of a diagram {Mα}α∈P indexed by a filtered partially
ordered set P , where each Mα is a compact projective left A-module (Theorem 4.18). In the case n = 0, it
follows that M is compact projective and the conclusion is deduced by Proposition 4.7. In the case n ≥ 1,
for each ℵn-small filtered subset P ′ ⊆ P , let MP ′ denote the colimit lim−→α∈P ′ Mα. Then by [Ker, 061J], when
n ≥ 1 the M can be written as a filtered colimit of the diagram {MP ′}, where P ′ ranges over all ℵn-small
filtered subsets of P . Since M is ℵn-compact, the identity map idM : lim−→P ′ MP ′ →M factors through some
MP ′ , so that M is a retract of MP ′ . We may therefore replace M by MP ′ and P by P ′, and thereby reduce
to the case where P is ℵn-small. We have a canonical isomorphism

ExtmA (M,N) ≃ π0 MapLModA
(M,ΣmN) ≃ π0 lim←−

α∈P
MapLModA

(Mα,Σ
mN)

To show that this group vanishes, it will suffice (by virtue of Lemma 6.17) to show that the mapping spaces
MapLModA

(Mα,Σ
mN) are n-connective for each α ∈ P . This is clear, since Mα is a compact projective left

A-module and ΣmN is n-connective.

Theorem 6.19. Suppose that A is Grothendieck and that A⊗
≥0 is projectively rigid. Let f : A → B ∈

CAlg(A) be a faithfully flat map such that π0B is a ℵn-compact π0A-module for some n ≥ 0. Then f is
descendable.

Proof. The following argument is parallel with the proof of [SAG, Prop. D.3.3.1]. Since B is flat over A,
by Proposition 3.22 we can identify B with the image of its connective cover τ⩾0B under the base change
functor Modτ⩾0A(A) → ModA(A). By virtue of Proposition 6.15, to prove that A → B is descendable, it
will suffice to show that τ⩾0A → τ⩾0B is descendable. We may therefore replace ϕ by the induced map
τ⩾0A→ τ⩾0B and thereby reduce to the case where A is connective.

Let C denote the smallest stable subcategory of ModA(A) which contains all objects of the form M ⊗A B
and is closed under retracts. It will suffice to show that A belongs to C. Let K be the fiber of the map
ϕ : A→ B, and let ρ : K → A be the canonical map. For each integer m ⩾ 0, let ρ(m) : K⊗m → A⊗m ≃ A
be the the m th tensor power of ρ, formed in the monoidal ∞-category LModA. Then ρ(m+ 1) is given by

the composition K⊗m+1
idK⊗m−−−−→ K⊗m ρ(m)−−−→ A, so we have a fiber sequence

K⊗m ⊗A B → cofib(ρ(m+ 1))→ cofib(ρ(m))
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It follows by induction on m that each cofib(ρ(m)) belongs to C. Consequently, to prove that A ∈ C,
it will suffice to show that A is a retract of cofib(ρ(m)) for some m ⩾ 0. This condition holds if the
homotopy class of ρ(m) vanishes (when regarded as an element of Ext0A (K⊗m, A) ≃ ExtmA ((ΣK)⊗m, A).
The Proposition 3.25(4) implies that ΣK ≃ cofib(ϕ) is a flat A-module. Also we have that π0 cofib(K)
is ℵn-compact π0A-module. It follows that (ΣK)⊗m has the same properties for each m > 0, so that
ExtmA ((ΣK)⊗m, A) vanishes for m > n by virtue of Lemma 6.18.

6.3 Almost E∞-algebras

Lemma 6.20. Let A be a Grothendieck abelian 1-category. Then

(1) If A is dualizable as an object in Prad,1, then A satisfies the AB4*, i.e. small products are exact.

(2) If A satisfies the AB4*, then for any sequential inverse system in A

{· · · → Xn → Xn−1 → · · · }

satisfying Mittag-Leffler condition, we have lim←−
1

n
Xn = 0.

Proof. (1) and (2) are from [Kan24; Roo06] respectively.

Proposition 6.21 (Milnor sequence). Let C be a Grothendieck prestable ∞-category which satisfies AB4*.
Then C♡ satisfies AB4* too and for any inverse system in Sp(C)

{· · · → Xn
gn−→ Xn−1 → · · · },

we have the following Milnor short exact sequence in C♡ with any given i ∈ Z

0→
1

lim←−
n

πi+1(Xn)→ πi(lim←−
n

Xn)→ lim←−
n

πi (Xn)→ 0.

Proof. It follows directly from fiber sequence

lim←−
n

Xn →
∏

Xn
1−

∏
gn−−−−−→

∏
Xn

and the fact that πi(−) preserves small products under the assumption AB4*.

We generalize the result in [HS24] to our settings.

Theorem 6.22. Assume that A is Grothendieck and A≥0 is dualizable additive. Let R ∈ CAlg(A≥0).
Consider the full subcategory LQR of CAlg(A≥0)R/ spanned by the maps φ : R→ S for which

(1) the multiplication S ⊗R S → S is an equivalence, i.e. φ is idempotent,

(2) π0(φ) : π0R→ π0S is epimorphic in A♡.

Then the functor
LQR −→

{
I ⊆ π0R | I2 = I

}
, φ 7−→ Ker(π0φ)

is an equivalence of categories, where we again regard the target as a poset via the inclusion ordering. The
inverse image of some I ⊆ π0(R) can be described more directly as R/I∞, where

I∞ = lim
n∈Nop

J⊗Rn
I

with JI → R the fibre of the canonical map R → H(π0(R)/I). Furthermore, this inverse system stabilises
on πi for n > i+ 1.

The image of the fully faithful restriction functor ModR/I∞(A)→ ModR(A) consists exactly of those modules
whose homotopy is killed by I, as desired.
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Proof. We only do slight modifications of original proof in [HS24] to fit into our framework. Firstly we
observe that the LQR is indeed equivalent to a poset [see HA, Proposition 4.8.2.9]. Let us also immediately
verify that Ker(π0φ) is indeed idempotent for φ : R→ S ∈ LQR. Tensoring the fibre sequence F → R→ S
with F gives

F ⊗R F −→ F −→ F ⊗R S

and the right hand term vanishes since one has a fibre sequence

F ⊗R S −→ R⊗R S −→ S ⊗R S

whose right hand map (after identifying R⊗R S ≃ S) is a section of the multiplication S⊗R S → S and thus
an equivalence. But F is connective and the map π0(F ) → Ker(π0φ) surjective by the long exact sequence
of φ, whence a chase in the diagram shows that the multiplication

Ker (π0φ)⊗π0R Ker (π0φ)→ Ker (π0φ)

is surjective as desired.

Next, we verify that the inverse system J⊗Rn
I stabilises degreewise. In fact we show slightly more, namely that

the cofibre R/JI ⊗R J⊗Rn
I of the canonical map J⊗Rn+1

I → J⊗Rn
I is n-connective. Since R/JI = H(π0(R)/I)

is annihilated by I, we immediately deduce that the homotopy groups of this cofibre are annihilated by
I (from both sides). Now, for n = 0, the connectivity claim is clear, and if we inductively assume that
R/JI ⊗R J⊗Rn

I is n-connective, then

R/JI ⊗R J⊗Rn+1
I =

(
R/JI ⊗R J⊗Rn

I

)
⊗R JI

is clearly also n-connective and its nth homotopy group is πn(R/JI ⊗R J
⊗n

R

I ) ⊗π0R I. Since the left hand
term is annihilated by I, we compute

πn
(
R/JI ⊗R J⊗Rn

I

)
⊗π0R I = πn

(
R/JI ⊗R J⊗Rn

I

)
⊗π0(R)/I π0(R)/I ⊗π0R I

= πn
(
R/JI ⊗R J⊗Rn

I

)
⊗π0(R)/I I/I

2 = 0

which complete the induction.

Now we claim (
lim

n∈Nop
J⊗Rn
I

)
⊗R JI −→ lim

n∈Nop
J⊗Rn
I

is an equivalence. Since the limit stabilises degreewise and JI is connective, we can move the limit out of
the tensor product by Lemma 6.20 and Proposition 6.21 (the cofibre of the interchange map is a limit of
terms with growing connectivity), and then the statement follows from finality. By the same argument, for
any n ≥ 1 the canonical map

I∞ ⊗R J⊗Rn
I → I∞

is equivalent too and hence I∞ ⊗R I∞ → I∞ is an equivalence—that is to say R → R/I∞ is idempotent
and hence produces an element in CAlg(A≥0)

idem
R/ .

As the next step, we show that the tautological map M = R ⊗R M → R/I∞ ⊗R M is an equivalence if
and only if the homotopy of M is annihilated by I, or in other words that I∞ ⊗RM ≃ 0. For the “only if”
direction, it suffices to observe that π0(R/I∞) = π0R/I. For “if” direction, we start with the simplest case
M = R/JI , where the claim was proved above. For an arbitrary R-module M concentrated in degree 0 and
killed by the action of I, it naturally inherits a H(π0R/I)-module structure and hence we get a retraction of
R-modules

I∞ ⊗RM → I∞ ⊗RM ⊗R H(π0R/I)→ I∞ ⊗RM.

However the middle one is zero by commutativity of ⊗R (note H(π0R/I) = R/JI), so I∞ ⊗RM = 0.

For bounded below M , we have

I∞ ⊗RM ≃ I∞ ⊗R
(

lim
k∈Nop

τ≤kM

)
≃ lim
k∈N◦p

I∞ ⊗R τ≤kM ≃ 0
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by commuting the limit out using the same argument as above. Finally, for arbitrary M whose homotopy
groups are killed by I, we find

I∞ ⊗RM ≃ I∞ ⊗R (colimk∈N τ≥−kM) ≃ colimk∈N I
∞ ⊗R τ≥−kM ≃ 0.

So combined with the idempotent property of R → R/I∞, we learn that the image of the fully faithful
restriction functor ModR/I∞(A)→ ModR(A) consists exactly of those modules whose homotopy is killed by
I, as desired.

Finally, we are ready to verify that the construction I 7→ (R→ R/I∞) induces an inverse to taking kernels.
The composition starting with an ideal is clearly the identity. So we are left to show that for every φ : R→ S
in LQR with I = Ker(π0φ), the canonical map ψ : R/I∞ → S, arising from the homotopy of S being
annihilated by I, is an equivalence. Per construction it induces an equivalence on π0. By Theorem 6.5, the
functor ψ! = S ⊗R/I∞ − : ModR/I∞(A)→ ModS(A) is thus conservative when restricted to bounded below
modules. But the map

S ≃ ψ! (R/I
∞)

ψ!(φ)−−−→ ψ!(S) = S ⊗R/I∞ S ≃ S ⊗R S
is induced by the unit and thus an equivalence since φ is idempotent.

Remark 6.23. The key fact used in the proof is that, for a Grothendieck abelian category satisfying AB4*,
the Mittag-Leffler condition implies “ lim←−

1” vanishes. So the theorem actually holds under weaker condition
that A is Grothendieck and left separated and A≥0 satisfies AB4*.

Theorem 6.24. Assume that A is Grothendieck and A≥0 is dualizable additive. Let R ∈ Alg(A≥0). Consider
the full subcategory LQR of Alg(A≥0)R/ spanned by E1-maps φ : R→ S for which

(1) the multiplication S ⊗R S → S is an equivalence, i.e. φ is idempotent,

(2) π0(φ) : π0R→ π0S is epimorphic in A♡.

Then the functor

LQR −→
{
two-sided ideals I ⊆ π0R | I2 = I

}
, φ 7−→ Ker(π0φ)

is an equivalence of categories, where we again regard the target as a poset via the inclusion ordering. The
inverse image of some I ⊆ π0(R) can be described more directly as R/I∞, where

I∞ = lim
n∈Nop

J⊗Rn
I

with JI → R the fibre of the canonical map R → H(π0(R)/I). Furthermore, this inverse system stabilises
on πi for n > i+ 1.

The image of the fully faithful restriction functor LModR/I∞(A) → LModR(A) consists exactly of those
modules whose homotopy is killed by I, as desired.

Proof. The non-commutative case is a bit more tricky. Firstly we observe that the LQR is indeed equivalent
to a poset [see HA, Proposition 4.8.2.9]. Let us also immediately verify that Ker(π0φ) is indeed idempotent
for φ : R→ S ∈ LQR. Tensoring the fibre sequence F → R→ S with F gives

F ⊗R F −→ F −→ F ⊗R S

and the right hand term vanishes since one has a fibre sequence

F ⊗R S −→ R⊗R S −→ S ⊗R S

whose right hand map (after identifying R⊗R S ≃ S) is a section of the multiplication S⊗R S → S and thus
an equivalence. But F is connective and the map π0(F ) → Ker(π0φ) surjective by the long exact sequence
of φ, whence a chase in the diagram shows that the multiplication

Ker (π0φ)⊗π0R Ker (π0φ)→ Ker (π0φ)
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is surjective as desired.

Next, we verify that the inverse system J⊗Rn
I stabilises degreewise. In fact we show slightly more, namely

that the cofibre R/JI ⊗R J⊗Rn
I of the canonical map J⊗Rn+1

I → J⊗Rn
I is n-connective. Now, for n = 0, the

connectivity claim is clear, and if we inductively assume that R/JI ⊗R J⊗Rn
I is n-connective, then

R/JI ⊗R J⊗Rn+1
I =

(
R/JI ⊗R J⊗Rn

I

)
⊗R JI

is clearly also n-connective and its nth homotopy group is πn(R/JI⊗RJ
⊗n

R

I )⊗π0RI. Since JI ∈ Algnu(RBModR(A)),
we have the following commutative diagram

JI ⊗R JI R⊗R JI

JI ⊗R JI JI ⊗R R JI

i⊗1

∼

1⊗i ∼

hence R/JI ⊗R JI ≃ JI ⊗RR/JI in R BModR(A). Then the left hand term R/JI ⊗R J⊗Rn
I is annihilated by

I from both sides, we compute

πn
(
R/JI ⊗R J⊗Rn

I

)
⊗π0R I = πn

(
R/JI ⊗R J⊗Rn

I

)
⊗π0(R)/I π0(R)/I ⊗π0R I

= πn
(
R/JI ⊗R J⊗Rn

I

)
⊗π0(R)/I I/I

2 = 0

which complete the induction.

Now we claim (
lim

n∈Nop
J⊗Rn
I

)
⊗R JI −→ lim

n∈Nop
J⊗Rn
I

is an equivalence. Since the limit stabilises degreewise and JI is connective, we can move the limit out of
the tensor product by Lemma 6.20 and Proposition 6.21 (the cofibre of the interchange map is a limit of
terms with growing connectivity), and then the statement follows from finality. By the same argument, for
any n ≥ 1 the canonical map

I∞ ⊗R J⊗Rn
I → I∞

is equivalent too and hence I∞ ⊗R I∞ → I∞ is an equivalence—that is to say R → R/I∞ is idempotent
and hence produces an element in Alg(A≥0)

idem
R/ .

As the next step, we show that for a left R-module M , the tautological map M = R⊗RM → R/I∞⊗RM is
an equivalence (in other words that I∞⊗RM ≃ 0) if and only if the homotopy of M is annihilated by I. For
the “only if” direction, it suffices to observe that π0(R/I∞) = π0R/I. For “if” direction, we start with the
simplest case M = R/JI , where the claim was proved above. For an arbitrary R-module M concentrated in
degree 0 and killed by the action of I, it naturally inherits a H(π0R/I)-module structure and hence we have
equivalences of R-modules

I∞ ⊗RM ≃ I∞ ⊗R H(π0R/I)⊗H(π0R/I) M.

However I∞ ⊗R H(π0R/I) is zero by H(π0R/I) = R/JI , so I∞ ⊗RM = 0.

For bounded below M , we have

I∞ ⊗RM ≃ I∞ ⊗R
(

lim
k∈Nop

τ≤kM

)
≃ lim
k∈N◦p

I∞ ⊗R τ≤kM ≃ 0

by commuting the limit out using the same argument as above. Finally, for arbitrary M whose homotopy
groups are killed by I, we find

I∞ ⊗RM ≃ I∞ ⊗R (colimk∈N τ≥−kM) ≃ colimk∈N I
∞ ⊗R τ≥−kM ≃ 0.

So combined with the idempotent property of R → R/I∞, we learn that the image of the fully faithful
restriction functor LModR/I∞(A) → LModR(A) consists exactly of those left modules whose homotopy is
killed by I, as desired.
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Finally, we are ready to verify that the construction I 7→ (R→ R/I∞) induces an inverse to taking kernels.
The composition starting with an ideal is clearly the identity. So we are left to show that for every φ : R→ S
in LQR with I = Ker(π0φ), the canonical map ψ : R/I∞ → S, arising from the homotopy of S being
annihilated by I, is an equivalence. By construction it induces an equivalence on π0. By Theorem 6.5, the
functor ψ! = S ⊗R/I∞ − : LModR/I∞(A) → LModS(A) is thus conservative when restricted to bounded
below modules. But the map

S ≃ ψ! (R/I
∞)

ψ!(φ)−−−→ ψ!(S) = S ⊗R/I∞ S ≃ S ⊗R S

is induced by the unit and thus an equivalence since φ is idempotent.

7 Deformation theory and étale rigidity

Throughout Section 7, we assume that A is left complete.

7.1 The cotangent complex formalism

We will freely use the deformation theory developed in [HA, §7.3-7.5].

Definition 7.1 (See [HA] 7.3.2.14.). Let C be a presentable∞-category, and consider the associated diagram

TC Fun(∆1,C)

C

G

p q

where q is given by evaluation at {1} ⊆ ∆1. The functor G carries p-Cartesian morphisms to q-Cartesian
morphisms, and for each object A ∈ C the induced map GA : Sp(C/A)→ C/A admits a left adjoint Σ∞.
Applying [HA, Proposition 7.3.2.6], we conclude that G admits a left adjoint relative to C, which we will
denote by F . The absolute cotangent complex functor L : C→ TC is defined to be the composition

C→ Fun(∆1,C)
F−→ TC

where the first map is given by the diagonal embedding. We will denote the value of L on an object A ∈ C

by LA ∈ Sp(C/A), and will refer to LA as the cotangent complex of A.

Definition 7.2 (See [HA] 7.4.1.1). Let C be a presentable ∞-category, and let p : MT (C)→ ∆1 × C denote
a tangent correspondence to C (see [HA, Definition 7.3.6.9]). A derivation in C is a map f : ∆1 → MT (C)
such that p◦f coincides with the inclusion ∆1×{A} ⊆ ∆1×C, for some A ∈ C. In this case, we will identify
f with a morphism η : A→M in MT (C), where M ∈ TC × C{A} ≃ Sp(C/A). We will also say η : A→M is
a derivation of A into M .

We let Der(C) denote the fiber product Fun(∆1,MT (C)) ×Fun(∆1,∆1×C) C. We will refer to Der(C) as the
∞-category of derivations in C.

Remark 7.3. We primarily care the case C = CAlg(A). In this case, an object in Der(C) can be informally
described as a triple data (A,M, η : A→M [1]) where A ∈ CAlg(A),M ∈ ModA(A) and η is a derivation.

Definition 7.4 (See [HA] 7.4.1.3). Let C be a presentable ∞-category, and let p : MT (C) → ∆1 × C be a
tangent correspondence for C. An extended derivation is a diagram σ

Ã A

0 M [1]

f

η

in MT (C) with the following properties:
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(1) The object 0 ∈ TC is a zero object of Sp
(
C/A

)
. Equivalently, 0 is a p-initial vertex of MT (C).

(2) The diagram σ is a pullback square.

(3) The objects Ã and A belong to C ⊆MT (C), while 0 and M belong to TC ⊆MT (C).

(4) Let f : ∆1 → C be the map which classifies the morphism f appearing in the diagram above, and let
e : ∆1×∆1 → ∆1 be the unique map such that e−1{0} = {0}×{0}. Then the diagram is commutative.

∆1 ×∆1 MT (C) ∆1 × C

∆1 C

σ

e

p

f

We let D̃er(C) denote the full subcategory of

Fun
(
∆1 ×∆1,MT (C)

)
×Fun(∆1×∆1,∆1×C) Fun

(
∆1,C

)
spanned by the extended derivations.

Definition 7.5. Throughout Section 7, we let Der = Der(CAlg(A)) denote the ∞-category of derivations
in CAlg(A). We let Aη = fib(η) denote the corresponding square-zero extension of A.
We define a subcategory Der+ ⊆ Der as follows:

(1) An object (η : A → M [1]) ∈ Der belongs to Der+ if and only if both A and M are connective.
Equivalently, η belongs to Der+ if both A and Aη are connective, and the map π0A

η → π0A is an
epimorphism in A♡.

(2) Let f : (η : A → M [1]) → (η′ : B → N [1]) be a morphism in Der between objects which belong to
Der+. Then f belongs to Der+ if and only if the induced map B ⊗A M → N is an equivalence of
B-modules.

Proposition 7.6 (See [HA] 7.3.3.6). Let

A

B C
f h

g

be morphisms in CAlg(A). Then there exists a canonical cofiber sequence

C ⊗B LB/A → LC/A → LC/B

in ModC(A) .

Proposition 7.7 (See [HA] 7.3.3.7). Let
A′ A

B′ B

be a pushout diagram in CAlg(A). Then there exists a canonical equivalence LB/A ≃ B ⊗B′ LB′/A′ in
ModB(A).

Lemma 7.8. Let f : (η : A → M [1]) → (η′ : B → N [1]) be a morphism in Der+. If the induced map
Aη → Bη

′
is an equivalence in CAlg(A), then f is an equivalence. (See [HA, Lem. 7.4.2.9] for the case of

spectra.)
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Proof. The morphism f determines a map of fiber sequences

Aη A M [1]

Bη
′

B N [1]

f0 f1

Since the left vertical map is an equivalence, we obtain an equivalence α : cofib(f0) ≃ cofib(f1). To complete
the proof, it will suffice to show that cofib(f0) vanishes. Suppose otherwise. Since cofib(f0) is connective and
A is left complete , there exists some smallest integer n such that πn cofib(f0) ̸= 0. In particular, cofib(f0)
is n-connective.

Since f induces an equivalence B ⊗AM → N , the cofib(f1) can be identified with
cofib(f0)⊗AM [1]. SinceM is connective, we deduce that cofib(f1) is (n+1)-connective. Using the equivalence
α, we conclude that cofib(f0) is (n + 1)-connective, which contradicts our assumption that πn cofib(f0) ̸=
0.

Definition 7.9. We define a subcategory Fun+(∆1,CAlg(A)) as follows:

(i) An object f : Ã→ A of Fun(∆1,CAlg(A)) belongs to Fun+(∆1,CAlg(A)) if and only if both A and Ã
are connective, and f induces a surjection π0Ã→ π0A.

(ii) Let f, g ∈ Fun+(∆1,CAlg(A)), and let α : f → g be a morphism in Fun(∆1,CAlg(A)). Then α belongs
to Fun+(∆1,CAlg(A)) if and only if it classifies a pushout square in the ∞-category CAlg(A).

Theorem 7.10. Let Φ : D̃er → Fun(∆1,CAlg(A)) be the functor given by (η : A → M [1]) 7→ (Aη → A).
Then Φ induces a functor Φ+ : D̃er

+
→ Fun+(∆1,CAlg(A)). Moreover, the functor Φ+ is a left fibration.

Proof. It is a parallel proof of [HA, Lem. 7.4.2.7].

Remark 7.11. The left complete condition that we assume at the beginning of the section is necessary in
the proof of Lemma 7.8, which is the only part involving the left completeness in the proof of [HA, Lem.
7.4.2.7].

Corollary 7.12. Let A ∈ CAlg(A≥0), M a connective A-module, and η : A→M [1] a derivation. Then the
functor Φ induces an equivalence of ∞-categories

Der+η/ → CAlgcnAη

given on objects by (η′ : B → N [1]) 7→ Bη
′
.

7.2 Deformation theory

Definition 7.13. We say a map of commutative ring objects A → B ∈ CAlg(A) is L-étale (or formally
étale) if the relative cotangent complex LB/A vanishes.

Remark 7.14. In deformation theory, the L-étale condition is only interesting in the connective case.

Lemma 7.15. Let
A

B C
f h

g

be morphisms in CAlg(A). Then:
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(1) Suppose that f is L-étale. Then g is L-étale if and only if h is L-étale.

(2) If g is L-étale and faithfully flat. Then f is L-étale if and only if h is L-étale.

Proof. It follows from the cofiber sequence

C ⊗B LB/A → LC/A → LC/B

in ModC(A).

Proposition 7.16. Let f : R→ S ∈ CAlg(A) be map such that S is an idempotent commutative R-algebra.
Then f is L-étale.

Proof.

Corollary 7.17. Let R → S ∈ CAlg(A♡) be a flat idempotent map between discrete commutative ring
objects. Then R→ S is L-étale.

Proof.

Lemma 7.18. Given a diagram of ∞-categories

C D

E

F

p q

where p, q are cocartesian fibrations and F preserves cocartesian edges. Let s ∈ E and θ : K▷ → Cs be a
diagram. If for any morphism f : s→ t ∈ E the edge f!◦θ : K▷ → Ct is an Fs-colimit, then θ is an F -colimit.

Proof. This is the relative version of [HTT, Prop. 4.3.1.10].

Corollary 7.19. Given a diagram of ∞-categories

C D

E

F

p q

where p, q are cocartesian fibrations and F preserves cocartesian edges. Let s ∈ E and θ : x → y be a
morphism in the fiber Cs. If for any morphism f : s→ t ∈ E, the edge f!(θ) : f!(x)→ f!(y) is Fs-cocartesian,
then θ is an F -cocartesian.

Proposition 7.20. Let f : A → B ∈ CAlg(A) ⊂ MT (CAlg(A)) be a morphism of E∞-ring objects. Then
f is F -cocartesian if and only if f is L-étale, where F : MT (CAlg(A)) → ∆1 × CAlg(A) is the natural
projection.

Proof. Applying Corollary 7.19 to the following diagram, we win.

MT (CAlg(A)) ∆1 × CAlg(A)

∆1

F

p q

Definition 7.21. We define a subcategory DerL-et ⊆ Der as follows:
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(1) A derivation η : A→M [1] belongs to DerL-et if and only if A and M are connective.

(2) Let ϕ : (η : A → M [1]) → (η′ : B → N [1]) be a morphism between derivations belonging to DerL-et.
Then ϕ belongs to DerL-et if and only the map A → B is L-étale, and ϕ induces an equivalence
M ⊗A B → N .

We define a subcategory CAlg(A≥0)
L-et ⊆ CAlg(A) as follows:

(1) An object A ∈ CAlg(A) belongs to CAlg(A≥0)
L-et if and only if A is connective.

(2) A morphism f : A → B of connective E∞-ring objects belongs to CAlg(A≥0)
L-et if and only if f is

L-étale.

Proposition 7.22. Let f : Der→ CAlg(A) denote the forgetful functor (η : A→M) 7→ A. Then f induces
a left fibration DerL-et → CAlg(A≥0)

L-et.

Proof. Fix 0 ≤ i < n; we must show that every lifting problem of the form

Λni DerL-et

∆n CAlg(A≥0)
L-et

l

admits a solution l. Considering the following diagram,

Λni DerL-et Der Fun(∆1,MT (CAlg(A)))

∆n CAlg(A≥0)
L-et CAlg(A) Fun(∆1,∆1 × CAlg(A))

⌜
l

l′
l
′′

then there exists a lifting l
′′

by Proposition 7.20, and hence there exists a lifting l
′
. We observe that l′

actually lies in DerL-et by Lemma 7.15, hence we find a solution l.

7.3 Étale rigidity

Definition 7.23. We say a map f : A → B in CAlg(A) is étale if f is flat, and τ≥0f : τ≥0A → τ≥0B is
L-étale and finitely presented.

Our main result in this section is the following theorem (see [HA] §7.5 for the statement in case of spectra).

Theorem 7.24 (Étale rigidity).
Assume that A is Grothendieck and left complete. Let A ∈ CAlg(A). Then:

(1) Let CAlg(A)fl,L-et
A/ denote the full subcategory of CAlg(A)A/ spanned by the flat L-étale maps A→ B.

If A is connective, then the functor π0 induces an equivalence

CAlg(A)fl,L-et
A/

∼−→ CAlg(A♡)fl,L-et
π0A/

with (the nerve of) the discrete flat L-étale commutative π0A-algebras.

(2) Suppose further that A⊗
≥0 is projectively rigid. Let CAlg(A)etA/ denote the full subcategory of CAlg(A)A/

spanned by the étale maps A→ B. Then the functor π0 induces an equivalence

CAlg(A)etA/
∼−→ CAlg(A♡)etπ0A/

with (the nerve of) the discrete étale commutative π0A-algebras.
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The proof will occupy the remainder of this section.

Proposition 7.25. Let η : A → M ∈ Der+ and α : Ã → A be the induced square-zero extension in
CAlg(A≥0). Now given a pushout diagram in CAlg(A≥0).

Ã A

B̃ B

f ′
0

α

f0

Then:

(1) The f ′0 is L-étale if and only if f0 is L-étale.

(2) Assume that A is Grothendieck. Then f ′0 is flat if and only if f0 is flat.

(3) If f ′0 is L-étale, then f ′0 is locally of finite presentation if and only if f0 is locally of finite presentation.

Proof.
(1) The “only if" direction is obvious. The “if” direction follows from the equivalences

LB/A ≃ B ⊗B̃ LB̃/Ã ≃ A⊗Ã LB̃/Ã

and Proposition 6.2.
(2) The “only if" direction is obvious. For the converse, suppose that B is flat over A : it suffices to show
that for every discrete Ã-module N , the relative tensor product B̃ ⊗Ã N is discrete by Proposition 3.15(3).
To prove this, let I ⊆ π0Ã be the kernel of the surjective map π0Ã → π0A, so that we have a short exact
sequence of modules over π0Ã :

0→ IN → N → N/IN → 0

It will therefore suffice to show that the tensor products B̃ ⊗Ã IN and B̃ ⊗Ã N/IN are discrete. Replacing
N by IN or N/IN , we can reduce to the case where IN = 0, so that N has the structure of an A-module.
Then B̃ ⊗Ã N ≃ B ⊗A N is discrete by virtue of the assumption that B is flat over A.
(3) The proof is a parallel argument as the proof of [DAGXIII, Lem. 2.5.4].

Proposition 7.26. Let A ∈ CAlg(A≥0), M be a connective A-module, and η : A → M [1] be a derivation.
Then the square-zero extension Ã→ A induces an equivalence

(−)⊗Ã A : CAlg(A≥0)
L-et
Ã/

∼−→ CAlg(A≥0)
L-et
A/

between ∞-categories of connective L-étale commutative Ã-algebras and commutative A-algebras.

Proof. Any square-zero extension Ã → A is associated to some derivation (η : A → M) ∈ DerL-et. Let
Φ : Der → Fun(∆1,CAlg(A)) be the functor defined in Theorem 7.10. Let Φ0,Φ1 : Der → CAlg(A) denote
the composition of Φ with evaluation at the vertices {0}, {1} ∈ ∆1. The functors Φ0 and Φ1 induce maps

CAlg(A≥0)
L-et
Ã/

Φ′
0←−− DerL-et Φ′

1−−→ CAlg(A≥0)
L-et
A/

Moreover, the functor Φ exhibits Φ′
1 as equivalent to the composition of Φ′

0 with the relative tensor product
⊗ÃA. Consequently, it will suffice to prove the following:

(1) The functor Φ′
0 is fully faithful, and its essential image consists precisely of the connective L-étale

commutative Ã-algebras.
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(2) The functor Φ′
1 is fully faithful, and its essential image consists precisely of the connective L-étale

commutative A-algebras.

The (1) follows from Corollary 7.12 and Proposition 7.25 (1). And the (2) follows from Proposition 7.22.

Definition 7.27 (See [HA] 7.4.1.18). For n ≥ 0, we say a morphism f : A→ B in CAlg(A≥0) is n-connective
if fib(f) belongs to A≥n. And we say f is an n-small extension if the following further conditions are satisfied:

(1) The fiber fib(f) belongs to A[n,2n].

(2) The multiplication map fib(f)⊗A fib(f)→ fib(f) is nullhomotopic.

We let Funn−con
(
∆1,CAlg(A)

)
denote the full subcategory of Fun

(
∆1,CAlg(A)

)
spanned by the n-connective

extensions, and Funn−sm
(
∆1,CAlg(A)

)
the full subcategory of

Funn−con
(
∆1,CAlg(A)

)
spanned by the n-small extensions.

We let Funn−sm
(
∆1,CAlg(A)

)
denote the full subcategory of Fun

(
∆1,CAlg(A)

)
spanned by the n-small

extensions.

Definition 7.28. For A ∈ CAlg(A), we let LA ∈ Sp
(
CAlg(A)/A

)
≃ ModA(A) denote its cotangent complex.

Let Der denote the ∞-category Der (CAlg(A)) of derivations in CAlg(A), so that the objects of Der can be
identified with pairs (A, η : LA →M [1]) where A is an commutative algebra object of A and η is a morphism
in ModA(A).

We let Dern−sm denote the full subcategory of Der spanned by those pairs (A, η : LA →M [1]) such that A
is connective and the image of M belongs to A[n,2n].

Theorem 7.29 (See [HA] 7.4.1.26). Let Φ : Der → Fun
(
∆1,CAlg(A)

)
be the functor given by (η : A →

B) 7→ (Aη → A). Then the functor Φ(k) restricts to an equivalence of ∞-categories

Φn−sm : Dern−sm → Funn−sm
(
∆1,CAlg(A)

)
Corollary 7.30.

(1) Every n-small extension in CAlg(A≥0) is a square-zero extension.

(2) Let A ∈ CAlg(A≥0). Then every map in the Postnikov tower

. . .→ τ≤3A→ τ≤2A→ τ≤1A→ τ≤0A

is a square-zero extension.

Theorem 7.31. Let f : A→ B ∈ CAlg(A) be a flat map such that τ≥0f : τ≥0A→ τ≥0B is L-étale, and let
C ∈ CAlg(A). Then the canonical map

MapCAlg(A)A/
(B,C)→ MapCAlg(A)π0A/

(π0B, π0C)

is a homotopy equivalence. In particular, MapCAlg(A)A/
(B,C) is homotopy equivalent to a discrete space.

Proof. The following proof is similar as [DAGIV, Prop. 3.4.13]. Let A0, B0, and C0 be connective covers of
A,B, and C, respectively. We have a pushout diagram

A0 A

B0 B

f0 f
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where f0 is flat L-étale. It follows that the induced maps

MapCAlg(A)A/
(B,C)→ MapCAlg(A)A0/

(B0, C)← MapCAlg(A)A0/
(B0, C0)

are homotopy equivalences. We may therefore replace A,B and C by their connective covers, and thereby
reduce to the case where A,B, and C are connective.

We have a commutative diagram

MapCAlg(A)A/
(B, π0C)

MapCAlg(A)A/
(B,C) MapCAlg(A)π0A/

(π0B, π0C)

ψϕ

where the map ψ is a homotopy equivalence. It will therefore suffice to show that ϕ is a homotopy
equivalence. Let us say a map g : D → D′ of commutative A-algebras is good if the induced map
ϕg : MapCAlg(A)A/

(B,D) → MapCAlg(A)A/
(B,D′) is a homotopy equivalence. Equivalently, g is good if

eB(g) is an equivalence, where eB : CAlg(A)A/ → S is the functor corepresented by B. We wish to show
that the truncation map C → π0C is good. We will employ the following chain of reasoning:

(i) Let D be a commutative A-algebra, let M be a D-module, and let g : D ⊕M → D be the projection.
For every map of commutative A-algebras h : B → D, the homotopy fiber of ϕg over the point h can
be identified with MapModB

(LB/A,M) ≃ MapModD
(LB/A⊗B D,M). Since f is L-étale, the homotopy

fibers of ϕg are contractible. It follows that ϕg is a homotopy equivalence, so that g is good.

(ii) The collection of good morphisms is stable under pullback. This follows immediately from the obser-
vation that eB preserves limits.

(iii) Any square-zero extension is good. This follows from (a) and (b).

(iv) Suppose given a sequence of good morphisms

. . .→ D2 → D1 → D0

Then the induced map lim←−{Di} → D0 is good. This follows again from the observation that eB
preserves limits.

(v) For every connective commutative A-algebra C, the truncation map C → π0C is good. This follows
by applying (d) to the Postnikov tower

. . .→ τ≤2C → τ≤1C → τ≤0C ≃ π0C

which is a sequence of square-zero extensions.

Proposition 7.32. Assume that A is Grothendieck. Let A ∈ CAlg(A≥0)≤n+1 be (n+1)-truncated connective.
Then the truncation functor τ≤n : CAlg(A)A/ → CAlg(A)τ≤nA/ restricts to:

(1) An equivalence CAlg(A)fl,L-et
A/

∼−→ CAlg(A)fl,L-et
τ≤nA/

from the ∞-category of flat L-étale commutative A-
algebras to the ∞-category of flat L-étale commutative τ≤nA-algebras.

(2) An equivalence CAlg(A)etA/
∼−→ CAlg(A)etτ≤nA/

from the ∞-category of étale commutative A-algebras to
the ∞-category of étale commutative τ≤nA-algebras.

Proof. It follows by combining Proposition 3.22(2), Proposition 7.25(2) and Proposition 7.26.
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Proposition 7.33 (See [HA] 7.4.3.17). Let f : A → B be a morphism in CAlg(A≥0). Suppose that n ≥ 0
and that f induces an equivalence τ≤nA→ τ≤nB. Then τ≤nLB/A ≃ 0 .

Corollary 7.34. Let f : A→ B be a map in CAlg(A≥0). Assume that cofib(f) is n-connective, for n ≥ 0.
Then the relative cotangent complex LB/A is n-connective. The converse holds provided that f induces an
isomorphism π0A→ π0B.

Proposition 7.35. Let f : A→ B ∈ CAlg(A≥0). Then:

(1) The f : A→ B is L-étale if τ≤nf : τ≤nA→ τ≤nB is L-étale for any n ≥ 0.

(2) Assume that A is Grothendieck. Then the f : A→ B is flat if and only if τ≤nf : τ≤nA→ τ≤nB is flat
for any n ≥ 0.

Proof.
(1) For any n ≥ 0, we have the cofiber sequence

τ≤nB ⊗B LB/A → Lτ≤nB/A → Lτ≤nB/B .

Since τ≤nLτ≤nB/B = 0 by Proposition 7.33, we get that τ≤n−1(τ≤nB ⊗B LB/A) ≃ τ≤n−1Lτ≤nB/A. Now
consider another cofiber sequence

τ≤nB ⊗τ≤nA Lτ≤nA/A → Lτ≤nB/A → Lτ≤nB/τ≤nA.

The Lτ≤nB/τ≤nA above vanishes by the assumption and τ≤nLτ≤nA/A = 0 by Proposition 7.33, so τ≤nLτ≤nB/A =
τ≤n(τ≤nB ⊗τ≤nA Lτ≤nA/A) = 0. Then combining Lemma 4.6 and equations above we get

τ≤n−1(LB/A) ≃ τ≤n−1(τ≤nB ⊗B LB/A) ≃ τ≤n−1Lτ≤nB/A = 0.

By the left completeness, we get LB/A = 0.
(2) The “only if" direction can be deduced by Proposition 3.22. Now suppose τ≤nf : τ≤nA → τ≤nB is flat
for any n ≥ 0. Since B is connective, it suffices to show that given any discrete M ∈ ModA(A)♡ we have
B ⊗AM ∈ ModB(A)♡ is discrete too. Now we have

τ≤n(B ⊗AM) ≃ τ≤n(τ≤nB ⊗AM)

by Lemma 4.6. Also we have

τ≤n(τ≤nB ⊗AM) ≃ τ≤n(τ≤nB ⊗τ≤nA τ≤nA⊗AM) ≃ τ≤nB ⊗τ≤nA τ≤n(τ≤nA⊗AM)

where the second equality comes from the flatness of τ≤nf . However note that by Lemma 4.6 we have

τ≤nB ⊗τ≤nA τ≤n(τ≤nA⊗AM) ≃ τ≤nB ⊗τ≤nA τ≤nM.

Combining these we get an equivalence τ≤n(B ⊗A M) ≃ τ≤nB ⊗τ≤nA τ≤nM , then by the flatness of τ≤nf
again we conclude that for any n ≥ 0, the τ≤n(B ⊗AM) is discrete. Hence B ⊗AM is discrete by the left
completeness.

We mimic the proof of [HA, Theorem 7.4.3.18] with light modification to get the following statements.

Proposition 7.36. Suppose that A is Grothendieck and that A≥0 is compactly generated. Let A ∈ CAlg(A≥0),
and let B be a connective E∞-algebra over A. Then:

(1) If B is locally of finite presentation over A, then LB/A is perfect as a B-module. The converse holds
provided that A⊗

≥0 is projectively rigid and that π0B is finitely presented as a commutative π0A-
algebra in the sense of Definition 2.11.
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(2) If B is almost of finite presentation over A, then LB/A is almost perfect as a B-module. The converse
holds provided that A≥0 is projectively generated and that π0B is finitely presented as a commutative
π0A-algebra in the sense of Definition 2.11.

Proof. We first prove the forward implications. It will be convenient to phrase these results in a slightly
more general form. Suppose given a commutative diagram σ:

A

B C
f h

g

in CAlg(A≥0), and let F (σ) = LB/A ⊗B C. We will show:
(1′) If B is locally of finite presentation as an E∞-algebra over A, then F (σ) is perfect as a C-module.
(2′) If B is almost of finite presentation as an E∞-algebra over A, then F (σ) is almost perfect as a C-module.

We will obtain the forward implications of (1) and (2) by applying these results in the case B = C. We first
observe that the construction σ 7→ F (σ) defines a functor CAlg(A)A//C → ModC(A). Note that the functor
F can be identified with the fiber of the relative adjunction

Fun(∆1,CAlg(A)A/) TCAlg(A)A/
Mod(ModA(A))

CAlg(A)A/

∼

on C ∈ CAlg(A)A/, we deduce that this functor preserves colimits. Since the collection of finitely presented
C-modules is closed under finite colimits and retracts, it will suffice to prove (1′) in the case where B =
Sym∗

AM for some connective perfect A-module M . Using Proposition [HA, Proposition 7.4.3.14], we deduce
that F (σ) ≃M ⊗A C is a perfect C-module, as desired.

We now prove (2′). By [HTT, Corollary 5.5.7.4], for any n ≥ 2 there exists a finitely presented commutative
A-algebra B′ ∈ CAlg(A≥0)A/ such that τ≤nB is a retraction of τ≤nB′ as commutative A-algebras. Note
that the retraction can be lifted in CAlg(A≥0)A//τ≤nC by [Ker, 04KB], as the following.

τ≤nB
′ τ≤nB

τ≤nC

r

i

Now consider the diagram
B′ τ≤nB

′ τ≤nB τ≤nC

A B C

r

We claim that τ≤n−2(LB/A ⊗B C) is a retraction of τ≤n−2(LB′/A ⊗B′ C). However, assertion (1′) implies
that LB′/A⊗B′ C will be perfect so long as B′ is locally of finitely presentation as a commutative A-algebra.
Then LB′/A ⊗B′ C is perfect as a retraction of a perfect module and LB/A ⊗B C is almost perfect.
Now using Proposition 7.33, we see that Lτ≤nB/B and Lτ≤nB′/B′ are n-connective, thus we have the natural
equivalences

τ≤n−2(LB/A ⊗B τ≤nB)
∼−→ τ≤n−2Lτ≤nB/A , τ≤n−2(LB′/A ⊗B′ τ≤nB

′)
∼−→ τ≤n−2Lτ≤nB′/A.

So
τ≤n−2(LB/A ⊗B C)

∼−→ τ≤n−2(LB/A ⊗B τ≤nC)
∼−→ τ≤n−2(Lτ≤nB/A ⊗τ≤nB τ≤nC)
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are equivalences by Lemma 4.6 (1). By assumption we have that the τ≤n−2(Lτ≤nB/A ⊗τ≤nB τ≤nC) is a
retraction of τ≤n−2(Lτ≤nB′/A ⊗τ≤nB′ τ≤nC). Again by Lemma 4.6 (1), we get the equivalences

τ≤n−2(LB′/A ⊗B′ C)
∼−→ τ≤n−2(LB′/A ⊗B′ τ≤nC)

∼−→ τ≤n−2(Lτ≤nB′/A ⊗τ≤nB′ τ≤nC).

Combining these, we in fact conclude that τ≤n−2(LB/A ⊗B C) is a retraction of τ≤n−2(LB′/A ⊗B′ C).

We now prove the reverse implication of (2). Assume that LB/A is almost perfect and that π0B is a finitely
presented as a commutative π0A-algebra. To prove (2), it will suffice to construct a sequence of maps

A→ B(−1)→ B(0)→ B(1)→ . . .→ B

such that each B(n) is locally of finite presentation as a commutative A-algebra, and each map fn : B(n)→ B
is (n+1)-connective. We begin by constructing B(−1) with an even stronger property: the map f−1 induces
an isomorphism π0B(−1) → π0B. By Proposition 5.15, there exists compact projective A-modules M,N
and a diagram

Sym∗
A(N) A

Sym∗
A(M) B

α

ϕ

such that the map B(−1) → B induces an equivalence on π0B, where we take B(−1) as the pushout of
above diagram.

We now proceed in an inductive fashion. Assume that we have already constructed a connective commutative
A-algebra B(n) which is of finite presentation over A, and an (n+ 1)-connective morphism fn : B(n)→ B
of commutative A-algebras. Moreover, we assume that the induced map π0B(n)→ π0B is an isomorphism
(if n ≥ 0 this is automatic; for n = −1 it follows from the specific construction given above). We have a
fiber sequence of B-modules

LB(n)/A ⊗B(n) B → LB/A → LB/B(n)

By assumption, LB/A is almost perfect. Assertion (2′) implies that LB(n)/A ⊗B(n) B is perfect. Using
Proposition 5.6, we deduce that the relative cotangent complex LB/B(n) is almost perfect. Moreover, Propo-
sition 7.33 ensures that LB/B(n) is (n+2)-connective. It follows that πn+2LB/B(n) is a compact module over
π0B. Using [HA, Theorem 7.4.3.12] and the isomorphism π0B(n)→ π0B, we deduce that the canonical map

πn+1fib(fn)→ πn+2LB/B(n)

is an isomorphism. Choose a compact projective B(n)-module M and a map M [n+ 1]→ fib(fn) such that
the composition

π0M ≃ πn+1M [n+ 1]→ πn+1fib(f) ≃ πn+2LB/B(n)

is epimorphic. By construction, we have a commutative diagram of B(n)-modules

M [n+ 1] 0

B(n) B

Adjoint to this, we obtain a diagram in CAlg(A≥0)A/.

Sym∗
B(n)M [n+ 1] B(n)

B(n) B
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We now define B(n+ 1) to be the pushout

B(n)⊗Sym∗
B(n)

M [n+1] B(n),

and fn+1 : B(n + 1) → B to be the induced map. It is clear that B(n + 1) is locally of finite presentation
over B(n), and therefore locally of finite presentation over A (Remark 5.14). To complete the proof of (2),
it will suffice to show that the fiber of fn+1 is (n+ 2)-connective.

By construction, we have a commutative diagram

π0B(n+ 1)

π0B(n) π0B

e′′e′

e

where the map e′ is epimorphic and e is isomorphic. It follows that e′ and e′′ are also isomorphic. In view
of Corollary 7.34, it will now suffice to show LB/B(n+1) is (n + 3)-connective. We have a fiber sequence of
B-modules

LB(n+1)/B(n) ⊗B(n+1) B → LB/B(n) → LB/B(n+1)

Using [HA, Proposition 7.4.3.14] and Proposition 7.7, we conclude that LB(n+1)/B(n) is canonically equivalent
to M [n+ 2]⊗B(n) B(n+ 1). We may therefore rewrite our fiber sequence as

M [n+ 2]⊗B(n) B → LB/B(n) → LB/B(n+1).

The inductive hypothesis and Corollary 7.34 guarantee that LB/B(n) is (n + 2)-connective. The (n + 3)-
connectiveness of LB/B(n+1) is therefore equivalent to the surjectivity of the map

π0M ≃ πn+2

(
M [n+ 2]⊗B(n) B

)
→ πn+2LB/B(n)

which is evident from our construction. This completes the proof of (2).

To complete the proof of (1), we use the same strategy but make a more careful choice of M . Let us assume
that LB/A is perfect. It follows from the above construction that each cotangent complex LB/B(n) is likewise
perfect. Using Proposition 5.11, we may assume LB/B(−1) is of Tor-amplitude ≤ k + 2 for some k ≥ 0.
Moreover, for each n ≥ 0 we have a fiber sequence of B-modules

LB/B(n−1) → LB/B(n) → P [n+ 2]⊗B(n) B,

where P is compact projective by our construction, and therefore of Tor-amplitude ≤ 0. Using Proposi-
tion 5.11 and induction on n, we deduce that the Tor-amplitude of LB/B(n) is ≤ k + 2 for n ≤ k. In
particular, the B-module M = LB/B(k)[−k−2] is connective and has Tor-amplitude ≤ 0. It follows from Re-
mark 5.10 that M is a flat B-module. Invoking Proposition 5.8, we conclude that M is a compact projective
B-module. Using Proposition 4.8, we can choose a compact projective B(k)-module M and an equivalance
M [k + 2] ⊗B(k) B ≃ LB/B(k). Using this map in the construction outlined above, we guarantee that the
relative cotangent complex LB/B(k+1) vanishes. It follows from Corollary 7.4.3.4 (which also works in our
general setting) that the map fk+1 : B(k+1)→ B is an equivalence, so that B is locally of finite presentation
as an E∞-algebra over A, as desired.

Corollary 7.37. Suppose that A is Grothendieck and that A⊗
≥0 is projectively rigid. Let f : A → B ∈

CAlg(A≥0). Then f is étale if and only if τ≤nf : τ≤nA→ τ≤nB is étale for every n ≥ 0.

Proof. It follows immediately by combining Proposition 7.35 and Proposition 7.36.

Proposition 7.38. Given a diagram in CAlg(A).

A

B C
f h

g
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(1) If f are étale, then g étale if and only if h is étale ??

(2) Suppose that A is Grothendieck and A⊗
≥0 is projectively rigid. If g is étale and faithfully flat and h is

étale, then f is étale.??

Proof.
(1) The “only if” direction follows from Proposition 3.23(1), Remark 5.14 and Proposition 7.6. For the “if”
direction ??
(2) By Proposition 3.23 and Lemma 7.15 it suffices to show that f is finitely presented. ??

Now we can give the proof of our étale rigidity. Our proof is parallel with the proof of [DAGIV, Theorem
3.4.1].
Proof of Theorem 7.24:
(1) First, using Proposition 3.20(3), we may reduce to the case where A is connective. For each 0 ≤ n ≤ ∞,
let Cn denote the full subcategory of Fun(∆1,CAlg(A≥0)) spanned by those morphisms f : B → B′ such
that B and B′ are connective and n-truncated, and let Cfl,L-et

n denote the full subcategory of Cn spanned
by those morphisms which are also flat and L-étale. Using the left completeness, we deduce that C∞ is the
homotopy inverse limit of the tower

. . .→ C2
τ≤1−−→ C1

τ≤0−−→ C0.

Using Proposition 7.35, we deduce that Cfl,L-et
∞ is the homotopy inverse limit of the restricted tower

. . .→ C
fl,L-et
2 → C

fl,L-et
1 → C

fl,L-et
0

Choose a Postnikov tower
A→ . . .→ τ≤2A→ τ≤1A→ τ≤0A

For 0 ≤ n ≤ ∞, let Dn denote the fiber product Cfl,L-et
n ×CAlg(A≥0) {τ≤nA}, so that we can identify

Dn with the full subcategory CAlg(A≥0)
fl,L-et
τ≤nA/

⊂ CAlg(A≥0)τ≤nA/ spanned by the flat L-étale morphisms
f : τ≤nA→ B. It follows from Proposition 7.35 that D∞ is the homotopy inverse limit of the tower

. . .→ D2
g1−→ D1

g0−→ D0

We wish to prove that the truncation functor induces an equivalence D∞ → D0. For this, it will suffice to
show that each of the functors gi is an equivalence. Consequently, it follows from Proposition 7.32.
(2) The proof is totally parallel with (1) by replacing “flat L-étale” with “étale” and replacing “by Proposi-
tion 7.35 ” with “by Corollary 7.37 ”.

□

8 Algebraic ttt-∞-categories and algebraic transformations

8.1 The universal example

Definition 8.1. We say a ttt-∞-category (B⊗,B≥0) is algebraic if B is Grothendieck and B⊗
≥0 is projectively

rigid. We denote a right t-exact colimit-preserving symmetric monoidal functor (B⊗,B≥0) → (C⊗,C≥0)
between algebraic ttt-∞-categories by an algebraic transformation.

Definition 8.2. Let V ∈ CAlg(PrL) and CAlgrig,atV denote the full subcategory of CAlg(PrLV) spanned by
rigid and atomically generated commutative V-algebras.

Remark 8.3. By Corollary 1.13, a ttt-∞-category (B⊗,B≥0) can be recovered from the Sp≥0-atomically
generated rigid commutative algebra B⊗

≥0. So there is an equivalence from the ∞-category of algebraic
ttt-∞-categories

CAlgalg(Prt-rexst )
∼−→ CAlgrig,atSp≥0

given by (B⊗,B≥0) 7→ B⊗
≥0. And the inverse is given by C⊗ 7→ (Sp(C)⊗,Sp(C)⩾0), see Corollary 1.13.
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Remark 8.4. In fact, the CAlgrig,atV is presentable for any V ∈ CAlg(PrL). To see that, firstly we have that
CAlgrig,atV = CAlgrigV ×Prdbl

V
PratV is accessible by combining [Ram24a, Corollary 3.15] and [Ram24b, Corollary

5.13, 5.14]. Then the presentability follows from that CAlgrig,atV admits small colimits, which is obtained by
observing the inclusion CAlgrig,atV ⊂ CAlgV is closed under small colimits.

Alternatively, we will give a more straightforward proof of the presentability of CAlgrig,atV in the case V⊗ =
Sp⊗≥0, and even further give a compact generator which is linked to cobordism hypothesis. Before that, let
us introduce a lemma, which we learned from Germán Stefanich.

Lemma 8.5. Let Cat×∞,ad denote the∞-category of small additive∞-categories with finite product preserving
functors. Then the core functor (−)≃ : Cat×∞,ad → S is conservative.

Proof.

Remark 8.6. Note that the additive condition in the above lemma can not be weakened to the semi-additive,
otherwise the endmorphism

(
1 f
0 1

)
is not necessarily an automorphism.

Definition 8.7. We say a symmetric monoidal ∞-category is small rigid if it is small and every object in it
is dualizable.

Proposition 8.8. We have a natural equivalence

CAlgrig,atSp≥0

∼−→ CAlgrig(Catidem∞,ad)

given by C⊗ 7→ (Ccproj)⊗, where CAlgrig(Catidem∞,ad) denotes the full subcategory of CAlg(Catidem∞,ad) spanned by
small rigid idempotent-complete additively symmetric monoidal ∞-categories.

Proof.

Now let us recall the (1-dimensional) cobordism hypothesis, which was originally formulated in [BD95] and
was proved by Hopkins–Lurie in [Lur08].

Theorem 8.9 ([Lur08] Cobordism hypothesis of dimension 1). Let Cob⊗
1 denote the oriented 1-dimensional

cobordism (∞, 1)-category with the symmetric monoidal structure given by disjoint union. Then Cob⊗
1 is

small rigid and satisfies the following universal property:
Let C be a symmetric monoidal (∞, 1)-category. Then the evaluation functor Z 7→ Z(∗) induces an equiva-
lence of ∞-categories

Fun⊗(Cob1,C)→ (Cd)≃

where Fun⊗ denotes the ∞-category of symmetric monoidal functors.

Remark 8.10. Note that the 1-dimensional oriented and framed cobordism ∞-categories are equivalent
Cob1 ≃ Bordfr

1 [see Lur08, §4.2], but that does not hold in higher dimensional cases.

Now let us prove the main theorem of this section.

Theorem 8.11 (Universal example). The CAlgrig,atSp≥0
is compactly generated by a single element

Fun(Cobop
1 ,Sp≥0)

⊗ ∈ CAlgrig,atSp≥0

where the symmetric monoidal structure on Fun(Cobop
1 ,Sp≥0) is given by Day convolution.

Proof.
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Proposition 8.12. Let I⊗ be a small rigid symmetric monoidal ∞-category which admits finite coproducts
and whose tensor product is compatible with finite coproducts. Then the natural symmetric monoidal functor

Fun(Iop,Sp≥0)
⊗ L⊗

−−→ Fun×(Iop,Sp≥0)
⊗ ≃ PΣ(I)

⊗

induced by the universal property of Yoneda embedding is a smashing localization, that is, there exists an
idempotent commutative algebra R ∈ CAlg(Fun(Iop,Sp≥0)) such that L(−) ≃ R⊗ (−).

Proof. By Lemma 4.27, it only suffices to show that the inclusion

Fun×(Iop,Sp≥0) ⊂ Fun(Iop,Sp≥0)

is closed under small colimits. That is obvious because both sides are additive and the inclusion is closed
under finite products and sifted colimits.

8.2 Algebraic transformations

Proposition 8.13. Let F : (B⊗,B≥0)→ (C⊗,C≥0) be an algebraic transformation between algebraic ttt-∞-
categories, and let R ∈ Alg(B≥0). Then the functor LModR(B≥0)→ LModF (R)(C≥0) preserves

(1) compact projectives;

(2) compacts;

(3) projectives;

(4) flats;

(5) almost perfects.

Proof.

Proposition 8.14. Let F : (B⊗,B≥0)→ (C⊗,C≥0) be an algebraic transformation between algebraic ttt-∞-
categories, and let R ∈ CAlg(B≥0). Then the functor CAlg(B≥0)R/ → CAlg(C≥0)F (R)/ preserves

(1) finitely presented;

(2) almost finitely presented;

(3) flats;

(4) L-étale;

(5) ∞-epimorphisms.

Proof.

8.3 Synthetic objects

Throughout Section 8.3 we assume that the ttt-∞-category (A⊗,A≥0) is algebraic.

Definition 8.15. Let Afp ⊂ A denotes the smallest full subcategory that contains all compact projectives
and is closed under finite direct sums, shifts and retractions. We call an object in Afp a graded finitely
projective. We define Syn(A)

def
= PΣ(A

fp; Sp) as the stable ∞-category of synthetic objects in A. It admits
a natural t-structure given by Syn(A)≥0 = PΣ(A

fp).
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Proposition 8.16. The Afp ⊂ A is closed under tensor products and inherits a small rigid additively
symmetric monoidal ∞-category. Hence PΣ(A

fp) is Grothendieck prestable and inherits a projectively rigid
symmetric monoidal structure.

We let (Syn(A)⊗,Syn(A)≥0) denote the associated algebraic ttt-∞-category of PΣ(A
fp)⊗.

Proposition 8.17. There exists a morphism in CAlgrig,atSp :

Syn(A)⊗ → A⊗

which is a symmetric monoidal localization.

Remark 8.18. Beware that this is not an algebraic transformation.

8.4 Examples

Definition 8.19. Let Z⊗ be the symmetric monoidal discrete category given by addition law. We define
the symmetric monoidal ∞-category of graded spectra as Fun(Z,Sp)⊗.

Example 8.20. Examples of algebraic ttt-∞-categories.

(1) The Fun(Iop,Sp)⊗, where I⊗ is a small rigid symmetric monoidal ∞-category, like
the Fil(Sp)⊗ = Fun(Z,Sp)⊗ the ∞-category of filtered spectra;
the Gr(Sp)

⊗
= Fun(Zdisc,Sp)⊗ the ∞-category of graded spectra .

(2) the Sp(PΣ(I))
⊗, where I⊗ is a small rigid finite-coproduct cocompletely symmetric monoidal ∞-

category, like Sp⊗G = Sp(PΣ(FinG))
⊗ the genuine G-spectra over a finite group G.

As Proposition 8.8 indicates, actually every algebraic ttt-∞-category comes from this way.

(3) Universal example in CAlgrig,atSp≥0
: the 1-dim cobordism Fun(Cobop

1 ,Sp)
⊗

(4) The ShΣ(C)
⊗ where C is an excellent ∞-site, see [Pst23]. For example the synthetic spectra Syn⊗E??

(need certain conditions on E)

(5) The ∞-category Shv(X,Sp)⊗ of sheaves on a stone space??

(6) The ∞-category Shv(X,Sp)⊗ of sheaves on an ∞-topos of locally homotopy dim=0??

(7) The∞-category SH(k)A−T
≥0 of connective Artin-Tate motivic spectra over a perfect field k, see [BHS20].

(8) Cyclotomic spectra and Cartier modules [AN21]??

(9) [HP23][HP24], equivariant [Bar17], motivic [Bac+22] [BHS20], Beilinson t, Ban, condensed, Liquid,
[Lur15]

(10) Qcoh(X)≥0, where X is an affine quotient stack, i.e. a stack of the form Spec(R)/G for a linearly
reductive group G acting on Spec(R), this works: the compact projective objects are generated under
taking retracts by pullbacks of G-representations and the dual is given by the pullback of the dual in
this case.

(11) Voevodsky’s category DM(k,Z[1/p]) (where p is characteristic of k or 1 if k is a Q-algebra), then there
is a Chow t-structure on it, generated by smooth projective varieties and their P1-desuspensions. The
mapping spectra between smooth projective varieties are connective, so they are compact projective
generators, and they are also dualizable within the retract closed-subcategory generated by it.

Example 8.21. projectively generated but not projectively rigid

(1) The Cond(Sp)⊗ = Sp(PΣ(Stonean))
⊗???
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(2) The Solid(Sp)⊗ ??

(3) The Fun(X,Sp)⊗ the ∞-category of parametrized spectra on a small (??) ∞-groupoid X, with point-
wise tensor product;

Example 8.22. Non-examples of projective generation:

(1) Let X be a projective variety over a field k with dim(X) > 0, then the only projective object in the
category QCoh(X)♡ of (discrete) quasi-coherent OX -modules is the zero object, see Projectives in
the category of quasi coherent sheaves Qch(X). That implies QCoh(X)≥0 is not projectively
generated.

(2) The profinite equivariant Sp⊗G??

9 Applications and questions

9.1 Questions

The following questions are what we did not figure out.

Question 9.1. Assume that A is Grothendieck and that A⊗
≥0 is projectively rigid.

(1) If f : A → B ∈ CAlg(A≥0) is finite presented and L-étale, then f is flat? i.e. Is the flatness in the
definition of “étale” removable?

(2) Given a diagram in CAlg(A≥0)

A

B C
f h

g

If f, h are étale, then so is g? (This is true if (1) holds.)
If g is étale and faithfully flat, then f is étale if and only if h is étale?
If g is étale, then there exists a finitely presented commutative A-algebra B0 and an étale map B0 → C0

such that C ≃ C0 ⊗B0
A?

(3) If M is a flat left R-module, then M is faithfully flat implies that the tensor product functor (−)⊗RM
is conservative. Does The converse hold??(probably wrong)

(4) If A is ??, then flat is equivalent to that for any n ∈ Z, we have πn(R)⊗π0R π0M → πnM is a natural
equivalence. (A sufficient condition is that for any compact projective left R-module P we have that
P∗ is a projective left P∗-module).

(5) The P∗ is projective as an object in ModR∗(Granti(A♡))? where P ∈ Mod(A≥0)
cproj .

(6) The π0 Sym∗(P ) is projective?(wrong! considering dirac) where P ∈ A
cproj
≥0 .

(7) Let f : A→ B ∈ CAlg(A) be a flat morphism in the sense of Definition 3.18. Then f is L-étale if and
only if τ≥0f : τ≥0A→ τ≥0B is L-étale? (seems wrong, considering ku→ KU).

Question 9.2. Assume that A is Grothendieck and hypercomplete.

(1) Given a pushout diagram in CAlg(A≥0).

Ã A

B̃ B

f ′
0

α

f0
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If f ′0 is L-étale and flat, then f ′0 is almost of finite presentation if and only if f0 is almost of finite
presentation?

(2) Let Ã → A be a nilpotent thickening in CAlg(A≥0). Then the tensor product functor restricting on
bounded below modules

ModÃ(A)− → ModA(A)−.

reflects compacts?

Question 9.3. Let A⊗ be a symmetric monoidal Grothendieck abelian category and f : A→ B ∈ CAlg(A).

(1) If Coker(f) is a flat A-module, then f is faithfully flat? (related with existence of monoidal prestable
enhancement of A⊗)

A Duality

A.1 Dualizable objects

We recollect some basic properties of dualizable objects in monoidal∞-categories. Throughout Appendix A.1,
we fix a symmetric monoidal ∞-category C⊗ → Comm⊗.

Definition A.1. We say an object X ∈ C is dualizable if there exists an object X∨ and a pair of morphisms

c : 1→ X ⊗X∨ e : X∨ ⊗X → 1

where 1 denotes the unit object of C. These morphisms are required to satisfy the following conditions: The
composite maps

X
c⊗id−−−→ X ⊗X∨ ⊗X id⊗e−−−→ X

X∨ id⊗c−−−→ X∨ ⊗X ⊗X∨ e⊗id−−−→ X∨

are homotopic to the identity on X and X∨, respectively.

Definition A.2. We say an object X ∈ C is cotensorable if the tensor product functor (−) ⊗ X : C → C

admits a right adjoint. If so, we denote this right adjoint by Map
C
(X,−).

Remark A.3. If C⊗ is a presentably symmetric monoidal∞-category, then any object in it is cotensorable.

Proposition A.4. Let X ∈ C be an object. Then X is dualizable if and only if X is cotensorable and for
any Y ∈ C, the natural map Map

C
(X,1)⊗ Y → Map

C
(X,Y ) is an equivalence in C.

Proof. Assume that X is dualizable. Then X is cotensorable since we have Map
C
(X,−) ≃ X∨ ⊗ (−).

Particularly, Map
C
(X,1) ≃ X∨. Now let Y ∈ C. We wish to show that the composite map

ϕ : MapC (−, Y ⊗X∨)→ MapC (−⊗X,Y ⊗X∨ ⊗X)
e−→ MapC(−⊗X,Y )

is a homotopy equivalence. Let ψ denote the composition

MapC(−⊗X,Y )→ MapC (−⊗X ⊗X∨, Y ⊗X∨)
c−→ MapC (−, Y ⊗X∨) .

Using the compatibility of e and c, we deduce that ϕ and ψ are homotopy inverses to one another. By the
Yoneda lemma, ϕ can be identified with the map Map

C
(X,1)⊗ Y → Map

C
(X,Y ).

Assume that X is cotensorable and that for any Y ∈ C, the natural map

Map
C
(X,1)⊗ Y → Map

C
(X,Y )

is an equivalence in C. Particularly, we have an equivalence Map
C
(X,1)⊗X ∼−→ Map

C
(X,X). Let c : 1 →

Map
C
(X,1) ⊗ X be the inverse image of the identity map id : Map

C
(X,X) → Map

C
(X,X). Then it is

straightforward to check that the counit e : Map
C
(X,1) ⊗ X → 1 and c : 1 → Map

C
(X,1) ⊗ X form a

duality datum.
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Proposition A.5. Let Cd ⊂ C be the full subcategory consisting of dualizable objects. Then the profunctor
Cd × Cd → S given by MapC (1,−⊗−) is a balanced profunctor (see [Ker, 03MM]), which induces a natural
equivalence of ∞-categories (−)∨ =: Map

C
(−,1) : (Cd)op ∼−→ Cd. Furthermore, (−)∨∨ ≃ IdCd is equivalent

to the identity functor.

Proof. It suffices to observe that if c : 1→ X ⊗ Y is part of a duality datum for X, then it is also part of a
duality datum for Y .

Remark A.6. In fact, this perfect pairing can be enhanced to a symmetric monoidal perfect pairing and
hence induces an equivalence of symmetric monoidal ∞-categories (−)∨ =: Map

C
(−,1) : (Cop

d )⊗
∼−→ (Cd)⊗,

see [ECI, Proposition 3.2.4].

Proposition A.7. The full subcategory Cd ⊂ C is closed under tensor product, hence it forms a symmetric
monoidal full subcategory.

Proof. Let X,Y ∈ Cd. Choosing c = cX ⊗ cY : 1 ≃ 1⊗ 1→ (X ⊗X∨)⊗ (Y ⊗ Y ∨) ≃ (X ⊗ Y )⊗ (Y ∨ ⊗X∨),
we see that c exhibits Y ∨ ⊗X∨ as a dual of X ⊗ Y .

Definition A.8. Let Ccot ⊂ C be the full subcategory consisting of cotensorable objects. We define the
functor

Map
C
(−,−) : (Ccot)op × C→ Fun′(Cop, S) ≃ C

given by (X,Y ) 7→ MapC(− ⊗X,Y ), where Fun′(Cop, S) ≃ C denotes the full subcategory of representable
functors.

Lemma A.9. Let K be a collection of simplicial sets. If C is K-cocomplete and the monoidal structure on it
is compatible with K-colimits for any K ∈ K (meaning the −⊗− preserves K-colimits separately), then for
any K ∈ K, the full subcategory Ccot ⊂ C is closed under K-colimits and for any diagram X(−) : K → Ccot,
the natural map lim←−α∈K Map

C
(Xα,−) ≃ Map

C
(lim−→α∈K Xα,−) is an equivalence in Fun(C,C).

Proof. Consider the following diagram:

(Ccot)op Cop Fun(C,C)
op

Fun(C,C) Fun(Cop × C, S)

X 7→Map
C
(X,−)

X 7→(−)⊗X

ϕ
iL

iR

where iL is given by F 7→ MapC(F (−),−) and iR is given by G 7→ MapC(−, G(−)). An object X ∈ C is
cotensorable if and only if ϕ(X) lies in the image of iR. Now given a diagram K ∈ K, it suffices to observe
that:

(i) (Ccot)op = ϕ−1(Im(iR)).

(ii) ϕ preserves Kop-limits and the inclusion iR is closed under Kop-limits.

Proposition A.10.

(1) If C⊗ is pointedly symmetric monoidal (meaning that C is pointed and the tensor product of the zero
object with any object is zero), then the zero object ∗ is dualizable.

(2) If C is idempotent complete, then Cd ⊂ C is closed under retractions.

(3) If C⊗ is semiadditively symmetric monoidal, then Cd ⊂ C is closed under finite coproducts and hence
forms a full semiadditive subcategory.
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(4) If C⊗ is stably symmetric monoidal, then Cd ⊂ C is closed under finite colimits and finite limits and
hence forms a full stable subcategory.

Proof. Applying Proposition A.4 and Lemma A.9 to K = {∅}, {N(Idem)}, {finite discrete diagrams}, {finite diagrams}
respectively, we proved (1), (2), (3) and the "closed under finite colimits" part of (4). For the "closed under
finite limits" part of (4), it suffices to show that Cd ⊂ C is closed under desuspension. This follows from
Σ−1X = (ΣX)∨ for a dualizable object X ∈ Cd.

A.2 Duality of Bimodules

Throughout Appendix A.2, we fix a monoidal ∞-category C⊗ → Ass⊗ which admits geometric realizations
of simplicial objects and such that the tensor product ⊗ : C × C → C preserves geometric realizations of
simplicial objects.

Definition A.11. Let X ∈ A BModB(C) and Y ∈ B BModA(C). Let c : B → Y ⊗A X be a map in
B BModB(C). We say c exhibits X as the right dual of Y , or c exhibits Y as the left dual of X, if there
exists a map e : X ⊗B Y → A in A BModA(C) such that

X ≃ X ⊗B B
id⊗c−−−→ X ⊗B Y ⊗A X

e⊗id−−−→ A⊗A X ≃ X

Y ≃ B ⊗B Y
c⊗id−−−→ Y ⊗A X ⊗B Y

id⊗e−−−→ Y ⊗A A ≃ Y

are homotopic to idX and idY , respectively.

Proposition A.12 (See [HA] 4.6.2.18). Let A ∈ Alg(C), let X ∈ LModA(C), let Y ∈ RModA(C), and let
c : 1→ Y ⊗A X be a map in C. Then the following are equivalent:

(1) The map c : 1→ Y ⊗A X exhibits Y as a left dual of X.

(2) For each C ∈ C and each M ∈ RModA(C), the composite map

MapRModA(C)(C ⊗ Y,M)→ MapC (C ⊗ Y ⊗A X,M ⊗A X)
◦c−→ MapC (C,M ⊗A X)

is a homotopy equivalence.

(3) For each C ∈ C and each N ∈ LModA(C), the composite map

MapLModA(C)(X ⊗ C,N)→ MapC (Y ⊗A X ⊗ C, Y ⊗A N)
◦c−→ MapC (C, Y ⊗A N)

is a homotopy equivalence.

Corollary A.13. Let A ∈ Alg(C). Let LModA(C)
ld ⊂ LModA(C) denote the full subcategory of left dualizable

left A-modules, and let RModA(C)
rd ⊂ RModA(C) denote the full subcategory of right dualizable right A-

modules. Then the profunctor RModA(C)
rd × LModA(C)

ld → S given by MapC (1,−⊗A −) is a balanced
profunctor (see [Ker, 03MM]), which induces a natural equivalence of ∞-categories

∨(−) : LModA(C)
ld

∼
⇄ (RModA(C)

rd)op : (−)∨.

Proof. It suffices to observe that c : 1→ Y ⊗A X exhibits Y as a left dual of X if and only if it exhibits X
as a right dual of Y .

Corollary A.14. Suppose that C⊗ is a cocompletely symmetric monoidal (potentially large) ∞-category,
i.e., C admits small colimits and the tensor product ⊗ : C × C → C preserves small colimits separately. Let
A ∈ Alg(C), let X ∈ LModA(C), let Y ∈ RModA(C), and let c : 1→ Y ⊗AX be a map in C. If C is generated
by dualizable objects under small colimits, then the following are equivalent:
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(1) The map c : 1→ Y ⊗A X in C exhibits Y as a left dual of X.

(2) The functor
MapC (1, Y ⊗A −) : LModA(C)→ Ŝ

is corepresented by X with the element c : 1→ Y ⊗A X.

(3) The functor
MapC (1,−⊗A X) : RModA(C)→ Ŝ

is corepresented by Y with the element c : 1→ Y ⊗A X.

(Note that we use the notation Ŝ above because C is not necessarily small here.)

B Ind(Pro)-completion of large ∞-categories

We fix three uncountable strongly inaccessible cardinals δ0 < δ1 < δ2. A set S is then defined as small
if S ∈ U(δ0), large if S ∈ U(δ1), and very large if S ∈ U(δ2), where U(δi) denotes the corresponding
Grothendieck universe.

Definition B.1. Let Ĉat∞ denote the very large ∞-category of large ∞-categories.

Theorem B.2 (See [HTT] 5.3.6.10). Let K ⊆ K′ be δ1-small collections of simplicial sets. Let Ĉat
K

∞ denote
the subcategory spanned by those ∞-categories which admit K-indexed colimits and those functors which

preserve K-indexed colimits, and let Ĉat
K′

∞ be defined likewise. Then the inclusion

Ĉat
K′

∞ ⊆ Ĉat
K

∞

admits a left adjoint given by C 7→ PK′

K (C).

Proposition B.3 (See [HP24] A.2). Let C be a coaccessible ∞-category (i.e. the Cop is accessible). For a
functor X : Cop → S, the following conditions are equivalent:

(1) The functor X : Cop → S is accessible.

(2) The functor X : Cop → S is the left Kan extension of a functor Y : (Cκ)
op → S along the canonical

inclusion i : (Cκ)
op → Cop for some small regular cardinal κ, where Cκ ⊂ C denotes the full subcategory

of κ-cocompact objects.

(3) The functor X : Cop → S is a colimit in Fun (Cop, S) of a small diagram of representable functors.

Corollary B.4 (See [HP24] A.4). Let C be a coaccessible ∞-category. Then the Yoneda embedding

C→ Funac(Cop, S)

exhibits Funac(Cop, S) ≃ Psmall
∅ (C), where Funac(Cop, S) denote the full subcategory of accessible functors.

Proposition B.5 (See [HP24] A.9). Let C be a coaccessible∞-category. The∞-category Pac(C) of accessible
presheaves of anima on C admits all small limits and colimits, and both are calculated pointwise.

Proposition B.6. Let C be a copresentable ∞-category and κ be a small regular cardinal. Then the Yoneda
embedding

C→ Funacκ -lex(C
op, S)

exhibits Funacκ -lex(C
op, S) ≃ Psmallκ -fil

∅ (C) = Indκ(C).
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Proof. First we observe that Indκ(C) = Funacκ -lex(C
op, S) ⊂ Funκ -lex(C

op, Ŝ) = Îndκ(C) is closed under small
κ-filtered colimits. We claim that any object in Funacκ -lex(C

op, S) can be written as the retraction of a small
κ-filtered colimit of representable functors. Then the result immediately follows.

Now let F ∈ Funacκ -lex(C
op, S). Since F ∈ Îndκ(C), it can be written as a large κ-filtered colimit of repre-

sentable functors F ≃ lim−→i∈I hXi . For each small κ-filtered full subcategory I ′ ⊆ I, let FI′ denote the colimit
lim−→α∈I′ hXα

. Then by [Ker, 0620] , the F can be written as a large δ0-filtered colimit of the diagram {FI′},
where I ′ ranges over all small κ-filtered full subcategory of I. However, by Proposition B.3 the F is largely
δ0-compact in Îndκ(C), so F is a retraction of some FI′ .

Proposition B.7. Let C be a copresentable ∞-category and κ be a small regular cardinal. Then Indκ(C) ≃
Psmall
κ -small(C).

Proof. By the construction in [HTT, Corollary 5.3.6.10], it is equivalent to prove that Indκ(C) ⊂ Îndκ(C)
is the smallest full subcategory which contains representables and closed under small colimits, i.e. to prove
Indκ(C) = Îndκ(C)

δ0 . Since the representables generates Îndκ(C) under large colimits, it suffices to show
that Indκ(C) ⊂ Îndκ(C)

δ0 and Indκ(C) is idempotent complete. Those are implied by Proposition B.3 and
Proposition B.5.

Definition B.8. Let Ĉat
κ -lex

∞ denote the subcategory spanned by those ∞-categories which admit finite
limits and those functors which preserve κ-small limits, where κ < δ1 is a large regular cardinal.

Proposition B.9. Let κ < λ < δ1 be two large regular cardinals. Then there exists an adjoint pair

Ĉat
κ -lex

∞

Proλκ
⇄ Ĉat

λ -lex

∞

by the dual version of [HTT, Corollary 5.3.6.10].

Remark B.10. We have the identification Proλκ(C) ≃ Indλκ(C
op)op.

Proposition B.11. The above adjunction can be promoted to a symmetric monoidal adjunction

Ĉat
κ -lex,⊗
∞

Proλκ
⇄ Ĉat

λ -lex,⊗
∞

by the dual version of [HA, Proposition 4.8.1.3].

Remark B.12 (Dual of [HA] 4.8.1.9). The CAlg(Ĉat∞) can be identified with the very large ∞-category
of large symmetric monoidal ∞-categories.
Unwinding the definitions, we see that CAlg(Ĉat

κ -lex

∞ ) can be identified with the subcategory of CAlg(Ĉat∞)
spanned by the symmetric monoidal ∞-categories which are compatible with κ-small limits (meaning the
tensor product − ⊗ − preserves κ-small limits separately), and those symmetric monoidal functors which
preserve κ-small limits.

Corollary B.13 (Dual version of [HA] 4.8.1.10). Let κ < λ < δ1 be two large regular cardinals. By the
following adjunction,

CAlg(Ĉat
κ -lex

∞ )
Proλκ
⇄ CAlg(Ĉat

λ -lex

∞ )

we see that for any large symmetric monoidal ∞-category C⊗ that the monoidal structure on C is compatible
with κ-small limits, there exists a λ-completely large symmetric monoidal ∞-category D⊗ and a symmetric
monoidal functor C⊗ → D⊗ with the following properties:

(1) The symmetric monoidal structure on D⊗ is compatible with λ-small limits.

(2) The underlying functor f : C→ D preserves κ-small limits.

(3) The f induces an identification D ≃ Proλκ(C), and is therefore fully faithful.

(4) The D⊗ is universal among those satisfying (1)-(3).
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C Ambidextrous subcategories

Definition C.1. Let i : C ↪→ D be a fully faithful functor of ∞-categories. We say C is an ambidextrous
subcategory of D if i admits both left and right adjoints L,R and the composition R(X)→ X → L(X) for
X ∈ D induces an natural equivalence R(−) ≃ L(−) in Fun(D,C).
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