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Why use -categories?

Some phenomena and propositions cannot be stated in full clarity without
oo-categories.

© Chromatic convergence and chromatic pullback:

l LnX — LymX l
X J T<1Y

/ l Lp 1 X —— LnflLK(n)X / l
X —— L[hX Y — 7«0Y

Chromatic convergence and chromatic pullback should be described as homotopy
limits of homotopy coherent diagrams N(Z%)) — Sp and A3 — Sp instead of

homotopy diagrams 7 — h(Sp) or A5 — h(Sp).

@ Similarly, a Postnikov tower in the category S of spaces and its convergence. 23
.




Why use -categories?

Example (More)

@ If C is a 1-category, then Sp(C) ~ {x} is trivial. The stabilization for 1-categories
is meaningless. Stable homotopy is a higher categorical phenomenon.

@ By oo-categories we can define all kinds of moduli spaces, such as
CAlg(Sp) X caig(nsp) {1}, the moduli space of E..-structures on a given
homotopy commutative ring spectrum R. The E.-structures on a Lubin—Tate
spectrum E(n,T') is unique, meaning CAlg(Sp) X caig(nsp) 1E(n,T)} is a
contractible Kan complex.
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Example (More)
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If C is a 1-category, then Sp(C) ~ {x} is trivial. The stabilization for 1-categories
is meaningless. Stable homotopy is a higher categorical phenomenon.

By oo-categories we can define all kinds of moduli spaces, such as

CAlg(Sp) X caig(nsp) {1}, the moduli space of E..-structures on a given
homotopy commutative ring spectrum R. The E.-structures on a Lubin—Tate
spectrum E(n,T') is unique, meaning CAlg(Sp) X caig(nsp) 1E(n,T)} is a
contractible Kan complex.

Bousfield localization and connective cover of an [E.-ring are still [E-rings.
In the oco-categorical setting, this is automatic by the fact Ly : Sp & Spg : ¢ and
i : Sp>o = Sp : T>0 are symmetric monoidal adjunctions, which induce
adjunctions CAlg(Sp) = CAlg(Spg) and CAlg(Sp>o) = CAlg(Sp).
Equivariant stable homotopy theory: there are numerous model categories
characterizing it, but all of their underlying co-categories are equivalent to
Fun(BG, Sp), which is both simple and intuitive.
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Motivation for  -categories

The most significant motivation is to enrich the morphism set Hom¢(X, Y) in a
category C to a topological space Mapc(X, Y). Then we can have higher morphisms
mnMape (X, Y).

For example, when considering the category of spectra, we have
mnMape(X,Y)=[E"X, Y] = Y "(X).

.

So the most intuitive model for oo-category theory should be sSet-enriched (or
Top-enriched) categories. However, all of these models are equivalent to Joyal's model.
Indeed we have Quillen equivalences (sSet) joyar = Catgser = Catrop.

But Joyal's model encodes information more concisely: the only data of a
quasi-category is a simplicial set.
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Information in an  -category

Underlying -enriched category

There are many different ways to extract mapping spaces Mapc (X, V') from an
oo-category C.

But when we take their underlying H = Ho(sSetk,,)-enriched categories, all of them
become the same, written as hC.

The processes C — hC — hC make it simpler to manage but meanwhile cause a loss of
homotopy coherent information. How to extract useful and discard redundant
information of homotopy coherence in specific circumstances is an “art” in
oo-categories’ world.
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Outlook and methodology

Preventing Russell's paradox
In order to consider the category of all categories, we need to add a set-theoretic

axiom into ZFC, i.e. Grothendieck's Assumption:
V cardinal , there exists an inaccessible cardinal 7 > k. (A good reference: Chap 1,

REPETE 1, 25 )
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Outlook and methodology

Preventing Russell's paradox
In order to consider the category of all categories, we need to add a set-theoretic

axiom into ZFC, i.e. Grothendieck's Assumption:
V cardinal , there exists an inaccessible cardinal 7 > k. (A good reference: Chap 1,

REFTE 1, FXH)

.

Methodology

By Grothendieck’s Assumption,

1. When not involving category of all categories, technically we can treat all things
as small. So all propositions not involving category of all categories will hold in any
Grothendieck universe.

2. When involving category of all categories, for example Cat.,, we consider it as
the oo-category Catl, of all 7-small categories for an inaccessible cardinal 7. Choose a
bigger inaccessible 75 > 7, then technically we can treat Cat]_ as a 7o-small
oo-category in Catl2.

\,
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Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let 7 : Cyp C C be a full subcategory, we say a functor F': C — D is a left Kan

extension along i iff VX € C, (Co xc C/x)” — C L Dis a colimit diagram, i.e.
colima_ x, accy F'(A) ~ F(X).

.
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Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let 7 : Cyp C C be a full subcategory, we say a functor F': C — D is a left Kan

extension along i iff VX € C, (Co xc C/x)” — C L Dis a colimit diagram, i.e.
colima_ x, accy F'(A) ~ F(X).

V.

The restriction Fun™ " (C, D) = Fun "5 (Cy, D) is a categorical equivalence.

4

V.
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Universal properties in the category of categories

Definition (Kan extension along a full subcategory)

Let 7 : Cyp C C be a full subcategory, we say a functor F': C — D is a left Kan

extension along i iff VX € C, (Co xc C/x)” — C L Dis a colimit diagram, i.e.
colima_ x, accy F'(A) ~ F(X).

The restriction Fun™ " (C, D) = Fun "5 (Cy, D) is a categorical equivalence.

Let C be a small category and D be a category that admits small colimits, then

(1) A functor F': P(C) — D is a left Kan extension along the Yoneda embedding
i:C— P(C) iff I preserves small colimits.

(2) For any f € Fun(C, D), there exists a left Kan extension F': P(C) — D along .
(3) And hence we have Fun®™(P(C), D) — Fun(C,D) is an equivalence. (e.g.
sSet — Top)

V.

11/39



Cocompletion

Definition
Let K be a collection of simplicial sets. We say that an oco-category C is K-cocomplete
if it admits K-diagram colimits, for each K € K.

We say that a functor of co-categories h : C — C exhibits C as a K-cocompletion of C
if the co-category Cis K-cocomplete and for every K-cocomplete co-category D,
precomposition with A induces an equivalence of oco-categories

Fun®(C, D) = Fun(C, D).

.
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Cocompletion

Definition
Let K be a collection of simplicial sets. We say that an oco-category C is K-cocomplete
if it admits K-diagram colimits, for each K € K.

We say that a functor of co-categories h : C — C exhibits C as a K-cocompletion of C
if the co-category Cis K-cocomplete and for every K-cocomplete co-category D,
precomposition with A induces an equivalence of oco-categories

Fun®(C, D) = Fun(C, D).

.

Let K be a (small) collection of simplicial sets, then for any (small) co-category C,
there exists a IK-completion C' — P*(C). That gives an adjunction
Catoso 2 Cat(K)oo, e.g. P™(C) = Fun(C,S) and PS4 (x) = S.
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More examples of universal properties

Let D be an oco-category.

Theorem (Pointedlization)

If D admits final object, then there exists a pointedlization D,, — D such that for any

pointed co-category C the forgetful functor 6 : Fun' (C, D.) — Fun'(C, D) is an
equivalence. That provides an adjunction Catl """ = CqtLinel.

A

.
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More examples of universal properties

Let D be an oco-category.

Theorem (Pointedlization)

If D admits final object, then there exists a pointedlization D,, — D such that for any

pointed co-category C the forgetful functor 6 : Fun' (C, D.) — Fun'(C, D) is an
equivalence. That provides an adjunction Catl """ = CqtLinel.

Theorem (Stabilization)

If D admits finite limits, then there exists a stabilization Sp(D) — D such that for any
stable co-category C the forgetful functor 6 : Fun™™ (C, Sp(D)) — Funf™(C, D) is

an equivalence. That provides an adjunction Catl ™ = CatLlim,

\
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More examples of universal properties

Let D be an oco-category.

Theorem (Pointedlization)

If D admits final object, then there exists a pointedlization D,, — D such that for any
pointed co-category C the forgetful functor 6 : Fun' (C, D.) — Fun'(C, D) is an
equivalence. That provides an adjunction Catl """ = CqtLinel.

V.

Theorem (Stabilization)

If D admits finite limits, then there exists a stabilization Sp(D) — D such that for any
stable oo-category C the forgetful functor 0 : FunFlf’m (C, Sp(D)) — Fun™(C, D) is
an equivalence. That provides an adjunction Catl ™ = CatLlim,

v
The category spectra Sp(P(x)) is the stabilization of the cocompletion of the trivial
oo-category.
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More examples of universal properties

Definition
Let n > —2, an object Z in an oco-category C'is n-truncated if, for every object
Y € C, the space Mapc (Y, Z) is n-truncated space.

Theorem (Truncation)

If C' is a presentable co-category, then there exists an n-truncation functor

C — 7<, C. Suppose that D is a presentable that all objects are n-truncated, i.e. it's
an (n + 1)-category. Then composition with T<,, induces an equivalence

s : Fun® (7<,C, D) — Fun(C, D). That provides an adjunction Pr* = Prﬁ(nﬂ).

V.
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More examples of universal properties

Definition
Let n > —2, an object Z in an oco-category C'is n-truncated if, for every object
Y € C, the space Mapc(Y, Z) is n-truncated space.

.

Theorem (Truncation)

If C' is a presentable co-category, then there exists an n-truncation functor

C — 7<, C. Suppose that D is a presentable that all objects are n-truncated, i.e. it's
an (n + 1)-category. Then composition with T<,, induces an equivalence

s : Fun® (7<,C, D) — Fun(C, D). That provides an adjunction Pr* = Prﬁ(nﬂ).

|

(1) An space X in S is n-truncated iff all 7; X vanish when 7 > n. Particularly
SSO ~ N(Set)
(2) An n-truncated object Cat is exactly an n-category. And all n-categories form an

(n 4 1)-category (Catso)<y -

v
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Postnikov-type tower

Let C be an oo-category and [ = {Cy C C; C --- C C,, C --- C C} be an ascending
sequence of reflective full subcategories of C, where reflective means the inclusion
functor C; — C admits a left adjoint.

Q If taking / = {S<o C S<1 C -+ C S<;, C --- C S}, we recover to the classical
case.

Q If taking I = {LoSp‘("p) C LlSp‘(’Jp) C---C LnSp‘(*;) C---C sz"p)} where Sp‘(‘;) is
the oo-category of finite p-local spectra, we get chromatic convergence case.

Definition (Tower and pretower)

© An [-tower in C is a functor N(ZZ)® — C, which we view as a diagram
Xoo — - = Xo — X1 — X) satisfying that for each n > 0, the map X, — X,
exhibits X,, as a C,,-reflection of X..

@ An [-pretower in C is a functor N(ZZ) — C:
-+ — Xo — X7 — Xy which exhibits each X,, as a C,-reflection of X, .

y
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Postnikov-type convergence

Let C be an oco-category, and [ = {Cy C C; C --- C C,, C --- C C} be an ascending
sequence of reflective full subcategories of C.

Definition

We let Post; (C) denote the co-category of I-towers, and Post;(C) the oo-category of
I-pretowers. We have an evident forgetful functor ¢ : C <— Post; (C) — Post;(C). We
will say that C is Postnikov /-complete if ¢ is an equivalence of co-categories.

Theorem (Postnikov-type convergence)

Suppose that any [-pretower in C has a limit. Then C is Postnikov I-complete

if and only if,

for every diagram X : N(Z;%)“ — C the following conditions are equivalent:

(1) The diagram X is an I-tower.

(2) The diagram X is a limit in C, and the restriction of X to N(ZZ) is an I-pretower.

v
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Higher commutative monoids

Definition (Reformulation of ordinary commutative monoids)

A (3-)commutative monoid in an ordinary category C which admits finite products is a
functor M : (Fin.)<3 — C such that the canonical maps M (p;) : M((n)) — M((1))
exhibit M((n)) ~ [[;<;<, M({1)) in C forall 0 < n < 3.

(3) — (2) (1) (2) « (1) (2) - (2)
l ASSOC J/ % l A \comm/
(2) —— (1) (1) (1)

Definition ( -commutative monoid)

Let C be an oo-category with finite products. We define an oco-commutative monoid in
C as a functor M : N(Fin,) — C such that the canonical maps
M(p;) : M((n))—M((1)) exhibit M((n)) ~ [];<;<, M((1)) in C for all n > 0.
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Symmetric monoidal  -category

Proposition (Barkan 2022)

Let C be a complete n-category. Then CMon>(C) = CMon™*?(C) is categorically
equivalent.

Definition

A symmetric monoidal co-category is an (oo-)commutative monoid in Cat.

Particularly, if a symmetric monoidal co-category C is a 1-category, then it is an
oo-commutative monoid in (Cats)<1, which is a 2-category and written as Cat<;. So
we have CMon>(Cat<1) = CMon*(Cat<y).

It can be checked that the 4-commutativity in Cal<; exactly corresponds with ordinary
coherent conditions of a symmetric monoidal category.
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Lurie's definition

By the (un)straightening equivalence Fun(N(Fin.), Calx) =~ CoCart)y (i, , We get
the following equivalent definition by Lurie.

Definition

A symmetric monoidal co-category is a coCartesian fibration of simplicial sets

p: C® — N(Fin,) with the following property:

For each n > 0, the maps {p’: (n) — (1)}1§i§n induce functors pj : C% — C%
which determine an equivalence CZ% ~ (C%)”.

We define C% as its underlying co-category.
<

This definition has technical advantages for general co-operads.
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Tensor product of -categories

Let K be the collection of all small simplicial sets.

Definition

Given 2 cocomplete co-categories C' and D, we define the tensor product as a functor
C x D — C® D such that for any cocomplete F, we have

Fun®(C ® D, E) = Fun®®%(C x D, E). Such tensor product always exists because
the natural functor C' x D — Pigi (C x D) satisfies that.

A
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Tensor product of -categories

Let K be the collection of all small simplicial sets.

Definition
Given 2 cocomplete co-categories C' and D, we define the tensor product as a functor

C x D — C® D such that for any cocomplete F, we have
Fun®(C ® D, E) = Fun®®%(C x D, E). Such tensor product always exists because

the natural functor C' x D — Pigi (C x D) satisfies that.

The above gives a symmetric monoidal structure @OO(K)@’ — Ni(Fin,) and makes

—R —
the cocompletion funcor a symmetric monoidal adjunction Cat., = Cat.(K)®. So
S = P(x) is the unit in Cat(K)®.
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Cocomplete symmetric monoidal structure

By (un)straightening equivalence, CAZ(@OO(K)) C C’Al(@oc) is the subcategory
whose objects are symmetric monoidal oo-categories such that — @ — preserves colimits
separately in each variable (called cocomplete symmetric monoidal categories), and
whose morphisms are colimit-preserving symmetric monoidal functors.

The symmetric monoidal adjunction induces an adjunction between algebras
F: CAl(Cats) = CAl(Catso(K)).

426 / 39




Cocomplete symmetric monoidal structure

By (un)straightening equivalence, CAZ(@OO(K)) C C’Al(@oc) is the subcategory
whose objects are symmetric monoidal oo-categories such that — @ — preserves colimits
separately in each variable (called cocomplete symmetric monoidal categories), and
whose morphisms are colimit-preserving symmetric monoidal functors.

A

The symmetric monoidal adjunction induces an adjunction between algebras
F: CAl(Cats) = CAl(Catoo(K)).

A

(1) The S = P(x) is the unit in @OO(K)‘XJ, which means it is initial object in
CAl(Cats(K)) and hence S admits a cocomplete symmetric monoidal structure S.
(2) So for any cocomplete symmetric monoidal co-category, there exists essentially

unique colimit-preserving symmetric monoidal functor S® — C®.
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Localization

Proposition (Localization)

Let C be an co-category and let L : C — C be a functor with essential image LC C C.
The following conditions are equivalent:

(1) There exists a functor [ : C — D with a fully faithful right adjoint g : D — C and
an equivalence between go f and L.

(2) When regarded as a functor from C to LC, L is a left adjoint of the inclusion

LC CC.

(3) There exists a natural transformation from id¢c — L such that, Loide — Lo L and
idc oL — Lo L are equivalences in Fun(C,C), i.e. an idempotent object in Fun(C,C)

4

Proposition

The full subcat Prl C @oo (K) is closed under tensor product and hence inherits a
symmetric monoidal structure Pr?.
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Symmetric monoidal colocalization

Proposition (Symmetric monoidal colocalization)

Let C® — N(Fin.) be a symmetric monoidal co-category. Let D C C be a full
subcategory which is stable under equivalence. Suppose that the functor
—® —:C xC — C carries D x D into D (meaning D is closed under tensor

products). Then the following hold.
@ The restricted map D® — N(Fin,) is a symmetric monoidal co-category.
@ The inclusion D C C® is a symmetric monoidal functor.

© Suppose that the inclusion D C C admits a right adjoint L (so that D is a
colocalization of C). Then there exists a lax-symmetric-monoidal right adjunction
L®:C% — D%, )

Formally speaking, L“ is a right adjunction in the strict 2-category ha(Op;oe ).

Under assumptions of (3) above, a symmetric monoidal colocalization can induce a
colocalization on algebras CAlg(D) = CAlg(C). )30




Connective cover

Corollary ( -structure and symmetric monoidal structure)

Let p: C® — N(Fin.) be a symmetric monoidal co-category. Assume that the
underlying co-category C is stable and that — ® — is exact in each variable. We will
say that a ¢-structure (C>0,C<() is compatible with the symmetric monoidal structure
if the functor ® carries C>¢ x C>¢ into C>q.

Then the induced map CQ>§0 — N(F'in,) is again a symmetric monoidal co-category,

and CZ, % C® is a symmetric monoidal colocalization. Thus it further induces a

colocalization CAlg(C>q) —— CAlg(C) .
T>0

.

Example (Connective cover of an  -ring)

When C = Sp we have CAlg(Sp=o) w——> CAlg(Sp) , which means that the
T>0

connective cover of an [E..-ring naturally inherits an [E.-structure.
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Symmetric monoidal localization

Proposition (Symmetric monoidal localization)

Let C® — N(Fin.) be a symmetric monoidal co-category. Let D C C be a full
subcategory. Suppose that D C C is a reflective subcategory (with a left adjoint
L:C — D). If for every pair g1, g2 of L-equivalences in C, the morphism g, & g5 in C
is also an L-equivalence (meaning L-equivalences are closed under tensor
products), then we have the following.

@ The restricted map D® — N(Fin,) is lax-symmetric-monoidal.

@ The inclusion D® C C® is a symmetric monoidal functor.

© There exists a symmetric monoidal left adjoint L% : C® — D%,

A symmetric monoidal localization can induce a localization on algebras
CAlg(C) = CAlyg(D).

.
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Bousfield localization

Let C® be a presentably symmetric monoidal co-category, i.e., an object in
CAlg(Pr¥) < CAlg(Cats).

Theorem (Bousfield localization)

Let E € C be an object. Then Wy ={X - Y|X®E = Y ® E} C Fun(A',C) is a
small-generated strongly saturated collection of morphisms, which means that there
exists an accessible localization functor Ly : C — C.

Furthermore, Bousfield localization is compatible with its symmetric monoidal
®

L‘,
structure, meaning it forms a symmetric monoidal localization C® _@2 C%) .
7

Example (Bousfield localization of an  -ring)

When C = Sp we have CAlg(C)O&LE)CAZg(CE) . This means that Bousfield

localization of an [E.-ring naturally inherits an [E.-structure.

.
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Idempotent object

Let C be a symmetric monoidal co-category.

Definition (idempotent object)

Let e: 1o — F be a morphism in C. We say ¢ is idempotent iff 1o @ X — X ® X is
equivalent. (e.g. Z — Z[1/p] in Ab)

Theorem (Bousfield localization with respect to an idempotent object)

Let e : 1o — E be a morphism in C, then
(1) The e is an idempotent object of C iff the transformation c : id¢ — g exhibits Iy
as a localization functor on C, where lp : C — C is given by the tensor product with F.
(2) If e is idempotent, then I is exactly the Bousfield localization with respect to E,
which has the following properties:

(a) The lg is compatible with @, so induces a symmetric monoidal localization

L®
i®

(b) The inclusion i® is also symmetric monoidal, meaning Cp is closed under tensor
products. 83/39




Idempotent algebra

Definition
Let C be a symmetric monoidal co-category. We will say that a commutative algebra
object A € CAlg(C) is idempotent if unit map e: 1 — A is idempotent.

.

Let C be a symmetric monoidal co-category with unit object 1, which we regard as a
trivial algebra object of C. Then the functor

6 : CAlg™™ (C) C CAlg(C) ~ CAlg(C),; — Cy,

is fully faithful, and its essential image are idempotent objects in C, which gives an

~

equivalence CAlgidem €)= (¢ /)idem .
Furthermore, any mapping space in (Cy/)™®™ is either empty or contractible, i.e.
(Cl/)ide’" is equivalent to a partial-order set N(I).
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Interesting applications after the internalization

Proposition

The full subcat Prl C Cato (K) is closed under tensor products (S is also the unit in
Pr’) and hence inherits a symmetric monoidal structure. In fact, for any C,D € Pr",
we have a natural equivalence C © D ~ RFun(C°?, D).

Theorem (Unique symmetric monoidal structure)

n - EQG
The following 4 colimit-preserving functors S EEUN T<nS, S & S., & — Sp, and
S 2k, N (Ab) are idempotent objects in Pr".
Hence by CAlg(Prk)idem =, (Pré/)"dem we conclude that
S resp. S<,, S., Sp, N(Ab) only admits a unique cocomplete symmetric monoidal
structure with the unit % resp. , S, ©>°50, 7 .

35/39



Interesting applications after the internalization

By Bousfield localization with respect to idempotent objects, we have:

The following 4 full subcategories of Pr” are closed under tensor products.
(a) PrE, ., : the co-category of presentable (1 + 1)-categories;

(b) Prl : the co-category of presentable pointed co-categories;

(c) Prk : the oco-category of presentable stable co-categories, known as

tensor-triangulated co-categories or tt-oo-categories;

(d) PrlL_ad : the oo-category of presentable additive 1-categories.
v

7®T<n8 — RS« —®8,
ey Prﬁn 1 prl —>® Pr*L, prl —27P, Prf,;,

The localization functors PrL

—QN(Ab ) . . . .
and Prt —(—)% PrlL_ad correspond with the n-truncation, copointedlization,

costabilization, and 1-coadditivalization of presentable co-categories respectively.
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My specific interests

Use higher algebra and spectral algebraic geometry (SAG) to explore various
intersections between homotopy theory and algebraic geometry.

@ A recent good example is the Chromatic Nullstellensatz by Burklund, Schlank,
and Yuan. They proved that “algebraically closed” E..-rings in CAlg(Spr(,)) are
exactly those Lubin—Tate spectra F(L) with L an algebraically closed field. And
for any non-zero T'(n)-local E..-ring R, there exists a geometric point R — E(L).

© For another beautiful example, the Devinatz—Hopkins theorem Ly ()5 >~ E,};Gn
can be interpreted as QCoh(Spf(E,)/Gy) =~ Spk(n) in (formal) SAG.

© In the framework of SAG, we can study spectral moduli problems: given an
algebro-geomtric stack Mg, can we give an [E.-realization M making
moM = My?
It is true when My = M, for the moduli stack of elliptic curves and when
My = Xk» for some of the Shimura stacks. Then taking the global sections of
[Eo-stacks respectively, we get T'MFE and TAF, which are intriguing E.-rings.
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My specific interests
Orientation theory from Thom spectra

@ Quillen discovered a deep connection between (homotopy) complex orientation set
Ory, (MU, E) = Hom caig(nsp) (MU, E) and formal group laws over E., which
became the cornerstone of chromatic homotopy theory.

@ After that, Ando—Hopkins—Strickland discovered a correspondence
Ory(MU(6), E) 25 3 (Pp;Z(0)) between MU (6)-orientations and cubical
structures. By uniqueness of cubical structures on any line bundle of any abelian
variety, we can endow a unique MU (6)-orientation to any elliptic cohomology
theory.

A\

-enhancement of orientations
When comes to E..-orientation space Org_ (Mf, R) := Map cy(sp) (Mf, R),

combining the Thom adjunction Mong__ (S)/pic(sp) & CAlg(Sp) and the infinite

loop space machine 1\/1011%’;0 (8) =~ Sp>p we can produce many interesting results.
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My specific interests

EOO
Spso — Mon (S) == Mong,. (5) Q@; CAlg(Sp)
: ;

\i/

By this adjunction we can get the following theorem.

Theorem (Ando-Blumberg—Gepner—Hopkins—Rezk)

Let Mf be the Thom E-spectrum induced by a map f : X — pic(Sp) in Sp>o and let
R be an Eo.-ring. Then Org_ (Mf, R) is a torsor over the H-space Mapg, (X, gh(R)),
meaning Org__ (Mf, R) is either empty or homotopy equivalent to Mapg, (X, gl (R)).

v

Particularly, combining with the Chromatic Nullstellensatz and some further
calculations, we can deduce that for any height = n > 0, the Org_ (MUP, E(F,)) is
non-empty and hence homotopy equivalent to Mapg, (ku, gh (E(F))).

.

39/39



