# An overview of $\infty$ -categories and higher algebra

# Jiacheng Liang

Southern University of Science and Technology

December 26, 2023

# Why use $\infty$ -categories?

Some phenomena and propositions cannot be stated in full clarity without  $\infty$ -categories.

## Example

Ohromatic convergence and chromatic pullback:



Chromatic convergence and chromatic pullback should be described as homotopy limits of homotopy coherent diagrams  $N(\mathbb{Z}_{\geq 0}^{op}) \to Sp$  and  $\Lambda_2^2 \to Sp$  instead of homotopy diagrams  $\mathbb{Z}_{\geq 0}^{op} \to h(Sp)$  or  $\Lambda_2^2 \to h(Sp)$ .

② Similarly, a Postnikov tower in the category  $\mathcal S$  of spaces and its convergence.

# Example (More)

- If C is a 1-category, then  $Sp(C) \simeq \{*\}$  is trivial. The stabilization for 1-categories is meaningless. **Stable homotopy** is a higher categorical phenomenon.
- ② By ∞-categories we can define all kinds of moduli spaces, such as  $CAlg(Sp) \times_{CAlg(hSp)} \{R\}$ , the moduli space of  $\mathbb{E}_{\infty}$ -structures on a given homotopy commutative ring spectrum R. The  $\mathbb{E}_{\infty}$ -structures on a Lubin–Tate spectrum  $E(n, \Gamma)$  is unique, meaning  $CAlg(Sp) \times_{CAlg(hSp)} \{E(n, \Gamma)\}$  is a contractible Kan complex.
- **Observed Solution** Bousfield localization and connective cover of an  $\mathbb{E}_{\infty}$ -ring are still  $\mathbb{E}_{\infty}$ -rings. In the  $\infty$ -categorical setting, this is automatic by the fact  $L_E : Sp \rightleftharpoons Sp_E : i$  and  $i : Sp_{\geq 0} \rightleftharpoons Sp : \tau_{\geq 0}$  are symmetric monoidal adjunctions, which induce adjunctions  $CAlg(Sp) \rightleftharpoons CAlg(Sp_E)$  and  $CAlg(Sp_{\geq 0}) \rightleftharpoons CAlg(Sp)$ .
- Equivariant stable homotopy theory: there are numerous model categories characterizing it, but all of their underlying ∞-categories are equivalent to Fun(BG, Sp), which is both simple and intuitive.

# Example (More)

- If C is a 1-category, then  $Sp(C) \simeq \{*\}$  is trivial. The stabilization for 1-categories is meaningless. **Stable homotopy** is a higher categorical phenomenon.
- ② By ∞-categories we can define all kinds of moduli spaces, such as  $CAlg(Sp) \times_{CAlg(hSp)} \{R\}$ , the moduli space of  $\mathbb{E}_{\infty}$ -structures on a given homotopy commutative ring spectrum R. The  $\mathbb{E}_{\infty}$ -structures on a Lubin–Tate spectrum  $E(n, \Gamma)$  is unique, meaning  $CAlg(Sp) \times_{CAlg(hSp)} \{E(n, \Gamma)\}$  is a contractible Kan complex.
- Bousfield localization and connective cover of an  $\mathbb{E}_{\infty}$ -ring are still  $\mathbb{E}_{\infty}$ -rings. In the ∞-categorical setting, this is automatic by the fact  $L_E : Sp \rightleftharpoons Sp_E : i$  and  $i : Sp_{\geq 0} \rightleftharpoons Sp : \tau_{\geq 0}$  are symmetric monoidal adjunctions, which induce adjunctions  $CAlg(Sp) \rightleftharpoons CAlg(Sp_E)$  and  $CAlg(Sp_{\geq 0}) \rightleftharpoons CAlg(Sp)$ .
- G Equivariant stable homotopy theory: there are numerous model categories characterizing it, but all of their underlying ∞-categories are equivalent to Fun(BG, Sp), which is both simple and intuitive.

## Motivation

The most significant motivation is to enrich the morphism set  $Hom_{\mathcal{C}}(X, Y)$  in a category  $\mathcal{C}$  to a topological space  $Map_{\mathcal{C}}(X, Y)$ . Then we can have higher morphisms  $\pi_n Map_{\mathcal{C}}(X, Y)$ .

For example, when considering the category of spectra, we have  $\pi_n Map_{\mathcal{C}}(X, Y) = [\Sigma^n X, Y] = Y^{-n}(X).$ 

So the most intuitive model for  $\infty$ -category theory should be *sSet*-enriched (or *Top*-enriched) categories. However, all of these models are equivalent to Joyal's model. Indeed we have Quillen equivalences  $(sSet)_{Joyal} \rightleftharpoons Cat_{sSet} \rightleftharpoons Cat_{Top}$ .

But Joyal's model encodes information more concisely: the only data of a quasi-category is a simplicial set.

# Underlying $\mathcal{H}$ -enriched category

There are many different ways to extract mapping spaces  $Map_{\mathcal{C}}(X, Y)$  from an  $\infty$ -category  $\mathcal{C}$ .

But when we take their underlying  $\mathcal{H} := Ho(sSet_{Kan})$ -enriched categories, all of them become the same, written as <u> $h\mathcal{C}$ </u>.

#### Remark

The processes  $\mathcal{C} \mapsto \underline{h\mathcal{C}} \mapsto \underline{h\mathcal{C}}$  make it simpler to manage but meanwhile cause a loss of homotopy coherent information. How to extract useful and discard redundant information of homotopy coherence in specific circumstances is an "art" in  $\infty$ -categories' world.

## Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

∀ cardinal  $\kappa$ , there exists an inaccessible cardinal  $\tau > \kappa$ . (A good reference: Chap 1, 代数学方法 1, 李文威)

#### Methodology

By Grothendieck's Assumption,

1. When not involving **category of all categories**, technically we can treat all things as small. So all propositions not involving **category of all categories** will hold in any Grothendieck universe.

 When involving category of all categories, for example Cat<sub>∞</sub>, we consider it as the ∞-category Cat<sub>∞</sub><sup>τ</sup> of all τ-small categories for an inaccessible cardinal τ. Choose a bigger inaccessible τ<sub>2</sub> > τ, then technically we can treat Cat<sub>∞</sub><sup>τ</sup> as a τ<sub>2</sub>-small ∞-category in Cat<sub>∞</sub><sup>τ<sub>2</sub></sup>.

## Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

∀ cardinal  $\kappa$ , there exists an inaccessible cardinal  $\tau > \kappa$ . (A good reference: Chap 1, 代数学方法 1, 李文威)

# Methodology

By Grothendieck's Assumption,

1. When not involving **category of all categories**, technically we can treat all things as small. So all propositions not involving **category of all categories** will hold in any Grothendieck universe.

2. When involving **category of all categories**, for example  $Cat_{\infty}$ , we consider it as the  $\infty$ -category  $Cat_{\infty}^{\tau}$  of all  $\tau$ -small categories for an inaccessible cardinal  $\tau$ . Choose a bigger inaccessible  $\tau_2 > \tau$ , then technically we can treat  $Cat_{\infty}^{\tau}$  as a  $\tau_2$ -small  $\infty$ -category in  $Cat_{\infty}^{\tau_2}$ .

# Definition (Kan extension along a full subcategory)

Let  $i : \mathcal{C}_0 \subset \mathcal{C}$  be a full subcategory, we say a functor  $F : \mathcal{C} \to \mathcal{D}$  is a left Kan extension along i iff  $\forall X \in \mathcal{C}$ ,  $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$  is a colimit diagram, i.e.  $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$ .

#### Theorem

The restriction  $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$  is a categorical equivalence.

#### Example

Let C be a small category and D be a category that admits small colimits, then (1) A functor  $F : \mathcal{P}(C) \to D$  is a left Kan extension along the Yoneda embedding  $i : C \to \mathcal{P}(C)$  iff F preserves small colimits. (2) For any  $f \in Fun(C, D)$ , there exists a left Kan extension  $F : \mathcal{P}(C) \to D$  along (3) And hence we have  $Fun^{colim}(\mathcal{P}(C), D) \to Fun(C, D)$  is an equivalence. (e.g.

# Definition (Kan extension along a full subcategory)

Let  $i : \mathcal{C}_0 \subset \mathcal{C}$  be a full subcategory, we say a functor  $F : \mathcal{C} \to \mathcal{D}$  is a left Kan extension along i iff  $\forall X \in \mathcal{C}$ ,  $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$  is a colimit diagram, i.e.  $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$ .

#### Theorem

The restriction  $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$  is a categorical equivalence.

#### Example

Let C be a small category and D be a category that admits small colimits, then (1) A functor  $F : \mathcal{P}(C) \to D$  is a left Kan extension along the Yoneda embedding  $i : C \to \mathcal{P}(C)$  iff F preserves small colimits. (2) For any  $f \in Fun(C, D)$ , there exists a left Kan extension  $F : \mathcal{P}(C) \to D$  along i(3) And hence we have  $Fun^{colim}(\mathcal{P}(C), D) \to Fun(C, D)$  is an equivalence. (e.g.  $sSet \to Top$ )

## Definition (Kan extension along a full subcategory)

Let  $i : \mathcal{C}_0 \subset \mathcal{C}$  be a full subcategory, we say a functor  $F : \mathcal{C} \to \mathcal{D}$  is a left Kan extension along i iff  $\forall X \in \mathcal{C}$ ,  $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$  is a colimit diagram, i.e.  $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$ .

#### Theorem

The restriction  $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$  is a categorical equivalence.

#### Example

Let  $\mathcal{C}$  be a small category and  $\mathcal{D}$  be a category that admits small colimits, then (1) A functor  $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$  is a left Kan extension along the Yoneda embedding  $i: \mathcal{C} \to \mathcal{P}(\mathcal{C})$  iff F preserves small colimits. (2) For any  $f \in Fun(\mathcal{C}, \mathcal{D})$ , there exists a left Kan extension  $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$  along i. (3) And hence we have  $Fun^{colim}(\mathcal{P}(\mathcal{C}), \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$  is an equivalence. (e.g.  $sSet \to Top$ )

## Definition

Let  $\mathbb{K}$  be a collection of simplicial sets. We say that an  $\infty$ -category  $\mathcal{C}$  is  $\mathbb{K}$ -cocomplete if it admits K-diagram colimits, for each  $K \in \mathbb{K}$ .

We say that a functor of  $\infty$ -categories  $h: \mathcal{C} \to \widehat{\mathcal{C}}$  exhibits  $\widehat{\mathcal{C}}$  as a K-cocompletion of  $\mathcal{C}$  if the  $\infty$ -category  $\widehat{\mathcal{C}}$  is K-cocomplete and for every K-cocomplete  $\infty$ -category  $\mathcal{D}$ , precomposition with h induces an equivalence of  $\infty$ -categories  $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}}, \mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C}, \mathcal{D}).$ 

#### Theorem

Let  $\mathbb{K}$  be a (small) collection of simplicial sets, then for any (small)  $\infty$ -category C, there exists a  $\mathbb{K}$ -completion  $C \to P^{\mathbb{K}}(C)$ . That gives an adjunction  $\widehat{Cat}_{\infty} \rightleftharpoons \widehat{Cat}(\mathbb{K})_{\infty}$ , e.g.  $P^{small}(C) = Fun(C, S)$  and  $P^{small}(*) = S$ .

## Definition

Let  $\mathbb{K}$  be a collection of simplicial sets. We say that an  $\infty$ -category  $\mathcal{C}$  is  $\mathbb{K}$ -cocomplete if it admits K-diagram colimits, for each  $K \in \mathbb{K}$ .

We say that a functor of  $\infty$ -categories  $h: \mathcal{C} \to \widehat{\mathcal{C}}$  exhibits  $\widehat{\mathcal{C}}$  as a K-cocompletion of  $\mathcal{C}$  if the  $\infty$ -category  $\widehat{\mathcal{C}}$  is K-cocomplete and for every K-cocomplete  $\infty$ -category  $\mathcal{D}$ , precomposition with h induces an equivalence of  $\infty$ -categories  $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}}, \mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C}, \mathcal{D}).$ 

#### Theorem

Let  $\mathbb{K}$  be a (small) collection of simplicial sets, then for any (small)  $\infty$ -category C, there exists a  $\mathbb{K}$ -completion  $C \to P^{\mathbb{K}}(C)$ . That gives an adjunction  $\widehat{Cat}_{\infty} \rightleftharpoons \widehat{Cat}(\mathbb{K})_{\infty}$ , e.g.  $P^{small}(C) = Fun(C, S)$  and  $P^{small}(*) = S$ .

Let  $\mathcal{D}$  be an  $\infty$ -category.

# Theorem (Pointedlization)

If  $\mathcal{D}$  admits final object, then there exists a pointedlization  $\mathcal{D}_{*/} \to \mathcal{D}$  such that for any pointed  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta$  : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $\operatorname{Cat}_{\infty}^{Final, pt} \rightleftharpoons \operatorname{Cat}_{\infty}^{Final}$ .

### Theorem (Stabilization)

If  $\mathcal{D}$  admits finite limits, then there exists a stabilization  $Sp(\mathcal{D}) \to \mathcal{D}$  such that for any stable  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta : \operatorname{Fun}^{Flim}(\mathcal{C}, Sp(\mathcal{D})) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$ .

#### Example

The category spectra Sp(P(\*)) is the stabilization of the cocompletion of the trivial  $\infty$ -category.

Let  $\mathcal{D}$  be an  $\infty$ -category.

# Theorem (Pointedlization)

If  $\mathcal{D}$  admits final object, then there exists a pointedlization  $\mathcal{D}_{*/} \to \mathcal{D}$  such that for any pointed  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta$  : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $\operatorname{Cat}_{\infty}^{Final, pt} \rightleftharpoons \operatorname{Cat}_{\infty}^{Final}$ .

# Theorem (Stabilization)

If  $\mathcal{D}$  admits finite limits, then there exists a stabilization  $Sp(\mathcal{D}) \to \mathcal{D}$  such that for any stable  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta$  :  $\operatorname{Fun}^{Flim}(\mathcal{C}, Sp(\mathcal{D})) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$ .

#### Example

The category spectra Sp(P(\*)) is the stabilization of the cocompletion of the trivial  $\infty$ -category.

Let  $\mathcal{D}$  be an  $\infty$ -category.

# Theorem (Pointedlization)

If  $\mathcal{D}$  admits final object, then there exists a pointedlization  $\mathcal{D}_{*/} \to \mathcal{D}$  such that for any pointed  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta$  : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $Cat_{\infty}^{Final, pt} \rightleftharpoons Cat_{\infty}^{Final}$ .

## Theorem (Stabilization)

If  $\mathcal{D}$  admits finite limits, then there exists a stabilization  $Sp(\mathcal{D}) \to \mathcal{D}$  such that for any stable  $\infty$ -category  $\mathcal{C}$  the forgetful functor  $\theta$  : Fun<sup>Flim</sup>  $(\mathcal{C}, Sp(\mathcal{D})) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$  is an equivalence. That provides an adjunction  $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$ .

#### Example

The category spectra Sp(P(\*)) is the stabilization of the cocompletion of the trivial  $\infty$ -category.

# Definition

Let  $n \ge -2$ , an object Z in an  $\infty$ -category C is *n*-truncated if, for every object  $Y \in C$ , the space  $Map_C(Y, Z)$  is *n*-truncated space.

## Theorem (Truncation)

If C is a presentable  $\infty$ -category, then there exists an *n*-truncation functor  $C \to \tau_{\leq n} C$ . Suppose that  $\mathcal{D}$  is a presentable that all objects are *n*-truncated, i.e. it's an (n + 1)-category. Then composition with  $\tau_{\leq n}$  induces an equivalence  $s : \operatorname{Fun}^{\mathrm{L}}(\tau_{\leq n} \mathcal{C}, \mathcal{D}) \to \operatorname{Fun}^{\mathrm{L}}(\mathcal{C}, \mathcal{D})$ . That provides an adjunction  $Pr^{L} \rightleftharpoons Pr^{L}_{\leq (n+1)}$ .

#### Example

(1) An space X in S is n-truncated iff all  $\pi_i X$  vanish when i > n. Particularly  $S_{\leq 0} \simeq N(Set)$ . (2) An n-truncated object  $Cat_{\infty}$  is exactly an n-category. And all n-categories form an (n+1)-category  $(Cat_{\infty})_{\leq n}$ .

# Definition

Let  $n \ge -2$ , an object Z in an  $\infty$ -category C is *n*-truncated if, for every object  $Y \in C$ , the space  $Map_C(Y, Z)$  is *n*-truncated space.

# Theorem (Truncation)

If C is a presentable  $\infty$ -category, then there exists an *n*-truncation functor  $C \to \tau_{\leq n} C$ . Suppose that  $\mathcal{D}$  is a presentable that all objects are *n*-truncated, i.e. it's an (n + 1)-category. Then composition with  $\tau_{\leq n}$  induces an equivalence  $s : \operatorname{Fun}^{\mathrm{L}}(\tau_{\leq n} \mathcal{C}, \mathcal{D}) \to \operatorname{Fun}^{\mathrm{L}}(\mathcal{C}, \mathcal{D})$ . That provides an adjunction  $Pr^{L} \rightleftharpoons Pr^{L}_{\leq (n+1)}$ .

### Example

(1) An space X in S is *n*-truncated iff all  $\pi_i X$  vanish when i > n. Particularly  $S_{\leq 0} \simeq N(Set)$ . (2) An *n*-truncated object  $Cat_{\infty}$  is exactly an *n*-category. And all *n*-categories form an (n + 1)-category  $(Cat_{\infty})_{\leq n}$ .

# Postnikov-type tower

Let  $\mathcal{C}$  be an  $\infty$ -category and  $I = \{\mathcal{C}_0 \subset \mathcal{C}_1 \subset \cdots \subset \mathcal{C}_n \subset \cdots \subset \mathcal{C}\}$  be an ascending sequence of reflective full subcategories of  $\mathcal{C}$ , where **reflective** means the inclusion functor  $\mathcal{C}_i \hookrightarrow \mathcal{C}$  admits a left adjoint.

### Example

- If taking  $I = \{S_{\leq 0} \subset S_{\leq 1} \subset \cdots \subset S_{\leq n} \subset \cdots \subset S\}$ , we recover to the classical case.
- ② If taking  $I = \{L_0 Sp^{\omega}_{(p)} \subset L_1 Sp^{\omega}_{(p)} \subset \cdots \subset L_n Sp^{\omega}_{(p)} \subset \cdots \subset Sp^{\omega}_{(p)}\}$  where  $Sp^{\omega}_{(p)}$  is the ∞-category of finite *p*-local spectra, we get chromatic convergence case.

### Definition (Tower and pretower)

- An *I*-tower in C is a functor  $N(\mathbb{Z}_{\geq 0}^{op})^{\triangleleft} \to C$ , which we view as a diagram  $X_{\infty} \to \cdots \to X_2 \to X_1 \to X_0$  satisfying that for each  $n \geq 0$ , the map  $X_{\infty} \to X_n$  exhibits  $X_n$  as a  $C_n$ -reflection of  $X_{\infty}$ .
- ② An *I*-pretower in *C* is a functor  $N(\mathbb{Z}_{\geq 0}^{op}) \to C$ : ... →  $X_2 \to X_1 \to X_0$  which exhibits each  $X_n$  as a  $C_n$ -reflection of  $X_{n+1}$ .

# Postnikov-type convergence

Let  $\mathcal{C}$  be an  $\infty$ -category, and  $I = \{\mathcal{C}_0 \subset \mathcal{C}_1 \subset \cdots \subset \mathcal{C}_n \subset \cdots \subset \mathcal{C}\}$  be an ascending sequence of reflective full subcategories of  $\mathcal{C}$ .

### Definition

We let  $\operatorname{Post}_{I}^{+}(\mathcal{C})$  denote the  $\infty$ -category of *I*-towers, and  $\operatorname{Post}_{I}(\mathcal{C})$  the  $\infty$ -category of *I*-pretowers. We have an evident forgetful functor  $\phi : \mathcal{C} \xleftarrow{} \operatorname{Post}_{I}^{+}(\mathcal{C}) \to \operatorname{Post}_{I}(\mathcal{C})$ . We will say that  $\mathcal{C}$  is **Postnikov** *I*-complete if  $\phi$  is an equivalence of  $\infty$ -categories.

### Theorem (Postnikov-type convergence)

Suppose that any *I*-pretower in *C* has a limit. Then *C* is Postnikov *I*-complete **if and only if**, for every diagram  $X : \mathbb{N}(\mathbb{Z}_{\geq 0}^{op})^{\triangleleft} \to C$  the following conditions are equivalent: (1) The diagram X is an *I*-tower. (2) The diagram X is a limit in *C*, and the restriction of X to  $\mathbb{N}(\mathbb{Z}_{\geq 0}^{op})$  is an *I*-pretower.

# Definition (Reformulation of ordinary commutative monoids)

A (3-)commutative monoid in an ordinary category  $\mathcal{C}$  which admits finite products is a functor  $M: (Fin_*)_{\leq 3} \to \mathcal{C}$  such that the canonical maps  $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$  exhibit  $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$  in  $\mathcal{C}$  for all  $0 \leq n \leq 3$ .



## Definition ( $\infty$ -commutative monoid)

Let  $\mathcal{C}$  be an  $\infty$ -category with finite products. We define an  $\infty$ -commutative monoid in  $\mathcal{C}$  as a functor  $M: N(Fin_*) \to \mathcal{C}$  such that the canonical maps  $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$  exhibit  $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$  in  $\mathcal{C}$  for all  $n \ge 0$ .

# Proposition (Barkan 2022)

Let  $\mathcal{C}$  be a complete *n*-category. Then  $CMon^{\infty}(\mathcal{C}) \xrightarrow{\sim} CMon^{n+2}(\mathcal{C})$  is categorically equivalent.

# Definition

A symmetric monoidal  $\infty$ -category is an ( $\infty$ -)commutative monoid in  $Cat_{\infty}$ .

## Corollary

Particularly, if a symmetric monoidal  $\infty$ -category C is a 1-category, then it is an  $\infty$ -commutative monoid in  $(Cat_{\infty})_{\leq 1}$ , which is a 2-category and written as  $Cat_{\leq 1}$ . So we have  $CMon^{\infty}(Cat_{\leq 1}) \xrightarrow{\sim} CMon^4(Cat_{\leq 1})$ .

It can be checked that the 4-commutativity in  $Cat_{\leq 1}$  exactly corresponds with ordinary coherent conditions of a symmetric monoidal category.

# Lurie's definition

By the (un)straightening equivalence  $Fun(N(Fin_*), Cat_{\infty}) \simeq CoCart_{/N(Fin_*)}$ , we get the following equivalent definition by Lurie.

## Definition

A symmetric monoidal  $\infty$ -category is a coCartesian fibration of simplicial sets  $p: \mathcal{C}^{\otimes} \to N(Fin_*)$  with the following property: For each  $n \geq 0$ , the maps  $\{\rho^i : \langle n \rangle \to \langle 1 \rangle\}_{1 \leq i \leq n}$  induce functors  $\rho^i_! : \mathcal{C}^{\otimes}_{\langle n \rangle} \to \mathcal{C}^{\otimes}_{\langle 1 \rangle}$  which determine an equivalence  $\mathcal{C}^{\otimes}_{\langle n \rangle} \simeq (\mathcal{C}^{\otimes}_{\langle 1 \rangle})^n$ . We define  $\mathcal{C}^{\otimes}_{\langle 1 \rangle}$  as its underlying  $\infty$ -category.

This definition has technical advantages for general  $\infty$ -operads.

# Tensor product of $\infty$ -categories

Let  $\mathbb{K}$  be the collection of all small simplicial sets.

### Definition

Given 2 cocomplete  $\infty$ -categories C and D, we define the tensor product as a functor  $C \times D \to C \otimes D$  such that for any cocomplete E, we have  $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K}\boxtimes\mathbb{K}}(C \times D, E)$ . Such tensor product always exists because the natural functor  $C \times D \to \mathcal{P}_{\mathbb{K}\boxtimes\mathbb{K}}^{\mathbb{K}}(C \times D)$  satisfies that.

#### Theorem

The above gives a symmetric monoidal structure  $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$  and makes the cocompletion funcor a symmetric monoidal adjunction  $\widehat{Cat}_{\infty}^{\otimes} \rightleftharpoons \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$ . So  $\mathcal{S} = \mathcal{P}(*)$  is the unit in  $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$ .

# Tensor product of $\infty$ -categories

Let  $\mathbb{K}$  be the collection of all small simplicial sets.

### Definition

Given 2 cocomplete  $\infty$ -categories C and D, we define the tensor product as a functor  $C \times D \to C \otimes D$  such that for any cocomplete E, we have  $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K}\boxtimes\mathbb{K}}(C \times D, E)$ . Such tensor product always exists because the natural functor  $C \times D \to \mathcal{P}_{\mathbb{K}\boxtimes\mathbb{K}}^{\mathbb{K}}(C \times D)$  satisfies that.

#### Theorem

The above gives a symmetric monoidal structure  $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$  and makes the cocompletion funcor a symmetric monoidal adjunction  $\widehat{Cat}_{\infty}^{\otimes} \rightleftharpoons \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$ . So  $\mathcal{S} = \mathcal{P}(*)$  is the unit in  $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$ .

# Remark

By (un)straightening equivalence,  $CAl(\widehat{Cat}_{\infty}(\mathbb{K})) \subset CAl(\widehat{Cat}_{\infty})$  is the subcategory whose objects are symmetric monoidal  $\infty$ -categories such that  $-\otimes -$  preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

# Corollary

The symmetric monoidal adjunction induces an adjunction between algebras  $F: CAl(\widehat{Cat}_{\infty}) \rightleftharpoons CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$ 

#### Corollary

(1) The  $S = \mathcal{P}(*)$  is the unit in  $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$ , which means it is initial object in  $CAl(\widehat{Cat}_{\infty}(\mathbb{K}))$  and hence S admits a cocomplete symmetric monoidal structure S. (2) So for any cocomplete symmetric monoidal  $\infty$ -category, there exists essentially unique colimit-preserving symmetric monoidal functor  $S^{\otimes} \to C^{\otimes}$ .

# Remark

By (un)straightening equivalence,  $CAl(\widehat{Cat}_{\infty}(\mathbb{K})) \subset CAl(\widehat{Cat}_{\infty})$  is the subcategory whose objects are symmetric monoidal  $\infty$ -categories such that  $-\otimes -$  preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

# Corollary

The symmetric monoidal adjunction induces an adjunction between algebras  $F: CAl(\widehat{Cat}_{\infty}) \rightleftharpoons CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$ 

## Corollary

(1) The  $S = \mathcal{P}(*)$  is the unit in  $\widehat{Cat_{\infty}}(\mathbb{K})^{\otimes}$ , which means it is initial object in  $CAl(\widehat{Cat_{\infty}}(\mathbb{K}))$  and hence S admits a cocomplete symmetric monoidal structure S. (2) So for any cocomplete symmetric monoidal  $\infty$ -category, there exists essentially unique colimit-preserving symmetric monoidal functor  $S^{\otimes} \to C^{\otimes}$ .

# Proposition (Localization)

Let C be an  $\infty$ -category and let  $L : C \to C$  be a functor with essential image  $LC \subseteq C$ . The following conditions are equivalent: (1) There exists a functor  $f : C \to D$  with a fully faithful right adjoint  $g : D \to C$  and

an equivalence between  $g \circ f$  and L.

(2) When regarded as a functor from C to LC, L is a left adjoint of the inclusion  $LC \subseteq C$ .

(3) There exists a natural transformation from  $id_{\mathcal{C}} \to L$  such that,  $L \circ id_{\mathcal{C}} \to L \circ L$  and  $id_{\mathcal{C}} \circ L \to L \circ L$  are equivalences in  $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$ , i.e. an idempotent object in  $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$ .

# Proposition

The full subcat  $Pr^{L} \subset \widehat{Cat_{\infty}}(\mathbb{K})$  is closed under tensor product and hence inherits a symmetric monoidal structure  $Pr_{L}^{\otimes}$ .

# Proposition (Symmetric monoidal colocalization)

Let  $C^{\otimes} \to N(Fin_*)$  be a symmetric monoidal  $\infty$ -category. Let  $\mathcal{D} \subseteq C$  be a full subcategory which is stable under equivalence. Suppose that the functor  $- \otimes - : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$  carries  $\mathcal{D} \times \mathcal{D}$  into  $\mathcal{D}$  (meaning  $\mathcal{D}$  is **closed under tensor products**). Then the following hold.

- **1** The restricted map  $\mathcal{D}^{\otimes} \to N(Fin_*)$  is a symmetric monoidal  $\infty$ -category.
- **2** The inclusion  $\mathcal{D}^{\otimes} \subseteq \mathcal{C}^{\otimes}$  is a symmetric monoidal functor.
- Suppose that the inclusion D ⊆ C admits a right adjoint L (so that D is a colocalization of C). Then there exists a lax-symmetric-monoidal right adjunction L<sup>⊗</sup> : C<sup>⊗</sup> → D<sup>⊗</sup>.

Formally speaking,  $L^{\otimes}$  is a right adjunction in the strict 2-category  $h_2(Op_{O\otimes})$ .

## Corollary

Under assumptions of (3) above, a symmetric monoidal colocalization can induce a colocalization on algebras  $CAlg(\mathcal{D}) \rightleftharpoons CAlg(\mathcal{C})$ .

### Corollary (*t*-structure and symmetric monoidal structure)

Let  $p: \mathcal{C}^{\otimes} \to N(Fin_*)$  be a symmetric monoidal  $\infty$ -category. Assume that the underlying  $\infty$ -category  $\mathcal{C}$  is stable and that  $-\otimes$  – is exact in each variable. We will say that a *t*-structure ( $\mathcal{C}_{\geq 0}, \mathcal{C}_{\leq 0}$ ) is **compatible** with the symmetric monoidal structure if the functor  $\otimes$  carries  $\mathcal{C}_{\geq 0} \times \mathcal{C}_{\geq 0}$  into  $\mathcal{C}_{\geq 0}$ . Then the induced map  $\mathcal{C}_{\geq 0}^{\otimes} \to N(Fin_*)$  is again a symmetric monoidal  $\infty$ -category,

and  $\mathcal{C}_{\geq 0}^{\otimes} \xleftarrow{i}{\tau_{\geq 0}} \mathcal{C}^{\otimes}$  is a symmetric monoidal colocalization. Thus it further induces a colocalization  $CAlg(\mathcal{C}_{\geq 0}) \xleftarrow{i}{\tau_{\geq 0}} CAlg(\mathcal{C})$ .

### Example (Connective cover of an $\mathbb{E}_{\infty}$ -ring)

When  $\mathcal{C} = Sp$  we have  $CAlg(Sp_{\geq 0}) \xleftarrow[\tau_{\geq 0}]{} CAlg(Sp)$ , which means that the connective cover of an  $\mathbb{E}_{\infty}$ -ring naturally inherits an  $\mathbb{E}_{\infty}$ -structure.

# Proposition (Symmetric monoidal localization)

Let  $C^{\otimes} \to N(Fin_*)$  be a symmetric monoidal  $\infty$ -category. Let  $\mathcal{D} \subseteq C$  be a full subcategory. Suppose that  $\mathcal{D} \subset C$  is a reflective subcategory (with a left adjoint  $L: C \to \mathcal{D}$ ). If for every pair  $g_1, g_2$  of L-equivalences in C, the morphism  $g_1 \otimes g_2$  in C is also an L-equivalence (meaning L-equivalences are closed under tensor products), then we have the following.

- **1** The restricted map  $\mathcal{D}^{\otimes} \to N(Fin_*)$  is lax-symmetric-monoidal.
- **2** The inclusion  $\mathcal{D}^{\otimes} \subseteq \mathcal{C}^{\otimes}$  is a symmetric monoidal functor.

**③** There exists a symmetric monoidal left adjoint  $L^{\otimes} : \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ .

## Corollary

A symmetric monoidal localization can induce a localization on algebras  $CAlg(\mathcal{C}) \rightleftharpoons CAlg(\mathcal{D}).$ 

# **Bousfield** localization

Let  $\mathcal{C}^{\otimes}$  be a presentably symmetric monoidal  $\infty$ -category, i.e., an object in  $CAlq(Pr^L) \hookrightarrow CAlq(Cat_{\infty}).$ 

## Theorem (Bousfield localization)

Let  $E \in \mathcal{C}$  be an object. Then  $W_E = \{X \to Y | X \otimes E \xrightarrow{\sim} Y \otimes E\} \subset Fun(\Delta^1, \mathcal{C})$  is a small-generated strongly saturated collection of morphisms, which means that there exists an accessible localization functor  $L_E: \mathcal{C} \to \mathcal{C}$ .

Furthermore, Bousfield localization is compatible with its symmetric monoidal

structure, meaning it forms a symmetric monoidal localization  $\mathcal{C}^{\otimes} \xleftarrow{L_E^{\otimes}}{\mathcal{C}_E^{\otimes}}$ .

# Example (Bousfield localization of an $\mathbb{E}_{\infty}$ -ring)

When  $\mathcal{C} = Sp$  we have  $CAlg(\mathcal{C}) \xleftarrow{CAlg(\mathcal{L}_E)} CAlg(\mathcal{C}_E)$ . This means that Bousfield localization of an  $\mathbb{E}_{\infty}$ -ring naturally inherits an  $\mathbb{E}_{\infty}$ -structure.

# Idempotent object

Let  $\mathcal{C}$  be a symmetric monoidal  $\infty$ -category.

# Definition (idempotent object)

Let  $e: 1_C \to E$  be a morphism in C. We say e is idempotent iff  $1_C \otimes X \to X \otimes X$  is equivalent. (e.g.  $\mathbb{Z} \to \mathbb{Z}[1/p]$  in Ab)

# Theorem (Bousfield localization with respect to an idempotent object)

Let  $e: 1_C \to E$  be a morphism in  $\mathcal{C}$ , then

(1) The *e* is an idempotent object of *C* iff the transformation  $\alpha : id_{\mathcal{C}} \to l_E$  exhibits  $l_E$  as a localization functor on *C*, where  $l_E : \mathcal{C} \to \mathcal{C}$  is given by the tensor product with *E*. (2) If *e* is idempotent, then  $l_E$  is exactly the Bousfield localization with respect to *E*, which has the following properties:

(a) The  $l_E$  is compatible with  $\otimes$ , so induces a symmetric monoidal localization

$$\mathcal{C}^{\otimes} \xleftarrow{L_E^{\otimes}}{i^{\otimes}} \mathcal{C}_E^{\otimes}$$
 ,

(b) The inclusion  $i^{\otimes}$  is also symmetric monoidal, meaning  $C_E$  is closed under tensor products.

# Definition

Let  $\mathcal{C}$  be a symmetric monoidal  $\infty$ -category. We will say that a commutative algebra object  $A \in \operatorname{CAlg}(\mathcal{C})$  is idempotent if unit map  $e : \mathbf{1} \to A$  is idempotent.

#### Theorem

Let C be a symmetric monoidal  $\infty$ -category with unit object 1, which we regard as a trivial algebra object of C. Then the functor

 $\theta : \operatorname{CAlg}^{idem}(\mathcal{C}) \subseteq \operatorname{CAlg}(\mathcal{C}) \simeq \operatorname{CAlg}(\mathcal{C})_{1/} \to \mathcal{C}_{1/}$ 

is fully faithful, and its essential image are idempotent objects in  $\mathcal{C}$ , which gives an equivalence  $\operatorname{CAlg}^{idem}(\mathcal{C}) \xrightarrow{\sim} (\mathcal{C}_{1/})^{idem}$ . Furthermore, any mapping space in  $(\mathcal{C}_{1/})^{idem}$  is either empty or contractible, i.e.  $(\mathcal{C}_{1/})^{idem}$  is equivalent to a partial-order set N(I).

# Interesting applications after the internalization

## Proposition

The full subcat  $Pr^{L} \subset \widehat{Cat}_{\infty}(\mathbb{K})$  is closed under tensor products (S is also the unit in  $Pr^{L}$ ) and hence inherits a symmetric monoidal structure. In fact, for any  $\mathcal{C}, \mathcal{D} \in Pr^{L}$ , we have a natural equivalence  $\mathcal{C} \otimes D \simeq RFun(\mathcal{C}^{op}, \mathcal{D})$ .

### Theorem (Unique symmetric monoidal structure)

The following 4 colimit-preserving functors  $S \xrightarrow{\tau \leq n} \tau_{\leq n} S$ ,  $S \xrightarrow{(-)_+} S_*$ ,  $S \xrightarrow{\Sigma_+^{\infty}} Sp$ , and  $S \xrightarrow{*\mapsto \mathbb{Z}} N(Ab)$  are idempotent objects in  $Pr^L$ . Hence by  $\operatorname{CAlg}(Pr^L)^{idem} \xrightarrow{\sim} (Pr^L_{S/})^{idem}$  we conclude that S resp.  $S_{\leq n}$ ,  $S_*$ , Sp, N(Ab) only admits a unique cocomplete symmetric monoidal structure with the unit \* resp. \*,  $S^0$ ,  $\Sigma^{\infty}S^0$ ,  $\mathbb{Z}$ .

# Interesting applications after the internalization

By Bousfield localization with respect to idempotent objects, we have:

## Corollary

The following 4 full subcategories of  $Pr^L$  are closed under tensor products. (a)  $Pr_{\leq n+1}^L$ : the  $\infty$ -category of presentable (n + 1)-categories; (b)  $Pr_*^L$ : the  $\infty$ -category of presentable pointed  $\infty$ -categories; (c)  $Pr_{st}^L$ : the  $\infty$ -category of presentable stable  $\infty$ -categories, known as tensor-triangulated  $\infty$ -categories or tt- $\infty$ -categories; (d)  $Pr_{1ad}^L$ : the  $\infty$ -category of presentable additive 1-categories.

## Corollary

The localization functors  $Pr^L \xrightarrow{-\otimes \tau_{\leq n} S} Pr^L_{\leq n+1}$ ,  $Pr^L \xrightarrow{-\otimes S_*} Pr^L_*$ ,  $Pr^L \xrightarrow{-\otimes Sp} Pr^L_{st}$ , and  $Pr^L \xrightarrow{-\otimes N(Ab)} Pr^L_{1\text{-}ad}$  correspond with the *n*-truncation, copointedlization, costabilization, and 1-coadditivalization of presentable  $\infty$ -categories respectively.

# My specific interests

Use higher algebra and spectral algebraic geometry (SAG) to explore various intersections between homotopy theory and algebraic geometry.

## Example

- A recent good example is the Chromatic Nullstellensatz by Burklund, Schlank, and Yuan. They proved that "algebraically closed"  $\mathbb{E}_{\infty}$ -rings in  $CAlg(Sp_{T(n)})$  are exactly those Lubin–Tate spectra E(L) with L an algebraically closed field. And for any non-zero T(n)-local  $\mathbb{E}_{\infty}$ -ring R, there exists a geometric point  $R \to E(L)$ .
- ② For another beautiful example, the Devinatz–Hopkins theorem  $L_{K(n)}S \simeq E_n^{hG_n}$  can be interpreted as QCoh(Spf( $E_n$ )/G<sub>n</sub>) ≃ Sp<sub>K(n)</sub> in (formal) SAG.
- In the framework of SAG, we can study spectral moduli problems: given an algebro-geomtric stack  $\mathcal{M}_0$ , can we give an  $\mathbb{E}_{\infty}$ -realization  $\mathcal{M}$  making  $\pi_0 \mathcal{M} = \mathcal{M}_0$ ?

It is true when  $\mathcal{M}_0 = \mathcal{M}_{ell}$  for the moduli stack of elliptic curves and when  $\mathcal{M}_0 = \mathcal{X}_{K^p}$  for some of the Shimura stacks. Then taking the global sections of  $\mathbb{E}_{\infty}$ -stacks respectively, we get TMF and TAF, which are intriguing  $\mathbb{E}_{\infty}$ -rings.

# Orientation theory from Thom spectra

- Quillen discovered a deep connection between (homotopy) complex orientation set  $\operatorname{Or}_h(MU, E) := \operatorname{Hom}_{CAlg(hSp)}(MU, E)$  and formal group laws over  $E_*$ , which became the cornerstone of chromatic homotopy theory.
- After that, Ando-Hopkins-Strickland discovered a correspondence
  Or<sub>h</sub>(MU⟨6⟩, E) → C<sup>3</sup>(P<sub>E</sub>; I(0)) between MU⟨6⟩-orientations and cubical
  structures. By uniqueness of cubical structures on any line bundle of any abelian
  variety, we can endow a unique MU⟨6⟩-orientation to any elliptic cohomology
  theory.

### -enhancement of orientations

When comes to  $\mathbb{E}_{\infty}$ -orientation space  $\operatorname{Or}_{\mathbb{E}_{\infty}}(Mf, R) := \operatorname{Map}_{CAlg(Sp)}(Mf, R)$ , combining the Thom adjunction  $\operatorname{Mon}_{\mathbb{E}_{\infty}}(\mathcal{S})_{/Pic(Sp)} \xleftarrow{M(-)} CAlg(Sp)$  and the infinite loop space machine  $\operatorname{Mon}_{\mathbb{E}_{\infty}}^{gp}(\mathcal{S}) \simeq Sp_{\geq 0}$  we can produce many interesting results.



By this adjunction we can get the following theorem.

# Theorem (Ando–Blumberg–Gepner–Hopkins–Rezk)

Let Mf be the Thom  $\mathbb{E}_{\infty}$ -spectrum induced by a map  $f: X \to \operatorname{pic}(Sp)$  in  $Sp_{\geq 0}$  and let R be an  $\mathbb{E}_{\infty}$ -ring. Then  $\operatorname{Or}_{\mathbb{E}_{\infty}}(Mf, R)$  is a torsor over the H-space  $\operatorname{Map}_{Sp}(X, gl_1(R))$ , meaning  $\operatorname{Or}_{\mathbb{E}_{\infty}}(Mf, R)$  is either empty or homotopy equivalent to  $\operatorname{Map}_{Sp}(X, gl_1(R))$ .

### Example

Particularly, combining with the Chromatic Nullstellensatz and some further calculations, we can deduce that for any  $\operatorname{height} = n > 0$ , the  $\operatorname{Or}_{\mathbb{E}_{\infty}}(MUP, E(\overline{\mathbb{F}}_p))$  is non-empty and hence homotopy equivalent to  $\operatorname{Map}_{Sp}(ku, gl_1(E(\overline{\mathbb{F}}_p)))$ .