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Why use ∞-categories?
Some phenomena and propositions cannot be stated in full clarity without
∞-categories.
Example

1 Chromatic convergence and chromatic pullback:
...

L1X

X L0X

LnX LK(n)X

Ln−1X Ln−1LK(n)X

...

τ≤1Y

Y τ≤0Y

Chromatic convergence and chromatic pullback should be described as homotopy
limits of homotopy coherent diagrams N (Zop

≥0)→ Sp and Λ2
2 → Sp instead of

homotopy diagrams Zop
≥0 → h(Sp) or Λ2

2 → h(Sp).
2 Similarly, a Postnikov tower in the category S of spaces and its convergence.
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Why use ∞-categories?

Example (More)
1 If C is a 1-category, then Sp(C) ' {∗} is trivial. The stabilization for 1-categories

is meaningless. Stable homotopy is a higher categorical phenomenon.
2 By ∞-categories we can define all kinds of moduli spaces, such as

CAlg(Sp)×CAlg(hSp) {R}, the moduli space of E∞-structures on a given
homotopy commutative ring spectrum R. The E∞-structures on a Lubin–Tate
spectrum E(n,Γ) is unique, meaning CAlg(Sp)×CAlg(hSp) {E(n,Γ)} is a
contractible Kan complex.

3 Bousfield localization and connective cover of an E∞-ring are still E∞-rings.
In the ∞-categorical setting, this is automatic by the fact LE : Sp ⇄ SpE : i and
i : Sp≥0 ⇄ Sp : τ≥0 are symmetric monoidal adjunctions, which induce
adjunctions CAlg(Sp) ⇄ CAlg(SpE) and CAlg(Sp≥0) ⇄ CAlg(Sp).

4 Equivariant stable homotopy theory: there are numerous model categories
characterizing it, but all of their underlying ∞-categories are equivalent to
Fun(BG,Sp), which is both simple and intuitive.
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Motivation for ∞-categories

Motivation
The most significant motivation is to enrich the morphism set HomC(X ,Y ) in a
category C to a topological space MapC(X ,Y ). Then we can have higher morphisms
πnMapC(X ,Y ).

For example, when considering the category of spectra, we have
πnMapC(X ,Y ) = [ΣnX ,Y ] = Y−n(X).

So the most intuitive model for ∞-category theory should be sSet-enriched (or
Top-enriched) categories. However, all of these models are equivalent to Joyal’s model.
Indeed we have Quillen equivalences (sSet)Joyal ⇄ CatsSet ⇄ CatTop.
But Joyal’s model encodes information more concisely: the only data of a
quasi-category is a simplicial set.
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Information in an ∞-category

Underlying H-enriched category
There are many different ways to extract mapping spaces MapC(X ,Y ) from an
∞-category C.
But when we take their underlying H := Ho(sSetKan)-enriched categories, all of them
become the same, written as hC.

Remark
The processes C 7→ hC 7→ hC make it simpler to manage but meanwhile cause a loss of
homotopy coherent information. How to extract useful and discard redundant
information of homotopy coherence in specific circumstances is an “art” in
∞-categories’ world.

6 / 39



Outlook and methodology

Preventing Russell’s paradox
In order to consider the category of all categories, we need to add a set-theoretic
axiom into ZFC, i.e. Grothendieck’s Assumption:
∀ cardinal κ, there exists an inaccessible cardinal τ > κ. (A good reference: Chap 1，
代数学方法 1，李文威)

Methodology
By Grothendieck’s Assumption,
1. When not involving category of all categories, technically we can treat all things
as small. So all propositions not involving category of all categories will hold in any
Grothendieck universe.
2. When involving category of all categories, for example Cat∞, we consider it as
the ∞-category Catτ∞ of all τ -small categories for an inaccessible cardinal τ . Choose a
bigger inaccessible τ2 > τ , then technically we can treat Catτ∞ as a τ2-small
∞-category in Catτ2∞.
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Universal properties in the category of categories

Definition (Kan extension along a full subcategory)
Let i : C0 ⊂ C be a full subcategory, we say a functor F : C → D is a left Kan
extension along i iff ∀X ∈ C, (C0 ×C C/X )▷ → C F−→ D is a colimit diagram, i.e.
colimA→X ,A∈C0F(A) ' F(X).

Theorem
The restriction FunLKan(C,D) ∼−→ Fun∃LKan(C0,D) is a categorical equivalence.

Example
Let C be a small category and D be a category that admits small colimits, then
(1) A functor F : P(C)→ D is a left Kan extension along the Yoneda embedding
i : C → P(C) iff F preserves small colimits.
(2) For any f ∈ Fun(C,D), there exists a left Kan extension F : P(C)→ D along i.
(3) And hence we have Funcolim(P(C),D)→ Fun(C,D) is an equivalence. (e.g.
sSet → Top)
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Cocompletion

Definition
Let K be a collection of simplicial sets. We say that an ∞-category C is K-cocomplete
if it admits K -diagram colimits, for each K ∈ K.

We say that a functor of ∞-categories h : C → Ĉ exhibits Ĉ as a K-cocompletion of C
if the ∞-category Ĉ is K-cocomplete and for every K-cocomplete ∞-category D,
precomposition with h induces an equivalence of ∞-categories
FunK(Ĉ,D) ∼−→ Fun(C,D).

Theorem
Let K be a (small) collection of simplicial sets, then for any (small) ∞-category C ,
there exists a K-completion C → PK(C ). That gives an adjunction
Ĉat∞ ⇄ Ĉat(K)∞, e.g. Psmall(C ) = Fun(C ,S) and Psmall(∗) = S.
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More examples of universal properties
Let D be an ∞-category.

Theorem (Pointedlization)
If D admits final object, then there exists a pointedlization D∗/ → D such that for any
pointed ∞-category C the forgetful functor θ : Fun′ (C,D∗)→ Fun′(C,D) is an
equivalence. That provides an adjunction CatFinal,pt

∞ ⇄ CatFinal
∞ .

Theorem (Stabilization)
If D admits finite limits, then there exists a stabilization Sp(D)→ D such that for any
stable ∞-category C the forgetful functor θ : FunFlim (C,Sp(D))→ FunFlim(C,D) is
an equivalence. That provides an adjunction CatFlim,st

∞ ⇄ CatFlim
∞ .

Example
The category spectra Sp(P(∗)) is the stabilization of the cocompletion of the trivial
∞-category.
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More examples of universal properties

Definition
Let n ≥ −2, an object Z in an ∞-category C is n-truncated if, for every object
Y ∈ C , the space MapC (Y ,Z ) is n-truncated space.

Theorem (Truncation)
If C is a presentable ∞-category, then there exists an n-truncation functor
C → τ≤nC . Suppose that D is a presentable that all objects are n-truncated, i.e. it’s
an (n + 1)-category. Then composition with τ≤n induces an equivalence
s : FunL (τ≤nC,D)→ FunL(C,D). That provides an adjunction PrL ⇄ PrL

≤(n+1).

Example
(1) An space X in S is n-truncated iff all πiX vanish when i > n. Particularly
S≤0 ' N (Set).
(2) An n-truncated object Cat∞ is exactly an n-category. And all n-categories form an
(n + 1)-category (Cat∞)≤n .

17 / 39



More examples of universal properties

Definition
Let n ≥ −2, an object Z in an ∞-category C is n-truncated if, for every object
Y ∈ C , the space MapC (Y ,Z ) is n-truncated space.

Theorem (Truncation)
If C is a presentable ∞-category, then there exists an n-truncation functor
C → τ≤nC . Suppose that D is a presentable that all objects are n-truncated, i.e. it’s
an (n + 1)-category. Then composition with τ≤n induces an equivalence
s : FunL (τ≤nC,D)→ FunL(C,D). That provides an adjunction PrL ⇄ PrL

≤(n+1).

Example
(1) An space X in S is n-truncated iff all πiX vanish when i > n. Particularly
S≤0 ' N (Set).
(2) An n-truncated object Cat∞ is exactly an n-category. And all n-categories form an
(n + 1)-category (Cat∞)≤n .

18 / 39



Postnikov-type tower
Let C be an ∞-category and I = {C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C} be an ascending
sequence of reflective full subcategories of C, where reflective means the inclusion
functor Ci ↪→ C admits a left adjoint.
Example

1 If taking I = {S≤0 ⊂ S≤1 ⊂ · · · ⊂ S≤n ⊂ · · · ⊂ S}, we recover to the classical
case.

2 If taking I = {L0Spω
(p) ⊂ L1Spω

(p) ⊂ · · · ⊂ LnSpω
(p) ⊂ · · · ⊂ Spω

(p)} where Spω
(p) is

the ∞-category of finite p-local spectra, we get chromatic convergence case.

Definition (Tower and pretower)
1 An I -tower in C is a functor N(Zop

≥0)
◁ → C, which we view as a diagram

X∞ → · · · → X2 → X1 → X0 satisfying that for each n ≥ 0, the map X∞ → Xn
exhibits Xn as a Cn-reflection of X∞.

2 An I -pretower in C is a functor N(Zop
≥0)→ C:

· · · → X2 → X1 → X0 which exhibits each Xn as a Cn-reflection of Xn+1.
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Postnikov-type convergence
Let C be an ∞-category, and I = {C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C} be an ascending
sequence of reflective full subcategories of C.

Definition
We let Post+I (C) denote the ∞-category of I -towers, and PostI (C) the ∞-category of
I -pretowers. We have an evident forgetful functor φ : C ∼←− Post+I (C)→ PostI (C). We
will say that C is Postnikov I -complete if φ is an equivalence of ∞-categories.

Theorem (Postnikov-type convergence)
Suppose that any I -pretower in C has a limit. Then C is Postnikov I -complete
if and only if,
for every diagram X : N(Zop

≥0)
◁ → C the following conditions are equivalent:

(1) The diagram X is an I -tower.
(2) The diagram X is a limit in C, and the restriction of X to N(Zop

≥0) is an I -pretower.
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Higher commutative monoids

Definition (Reformulation of ordinary commutative monoids)
A (3-)commutative monoid in an ordinary category C which admits finite products is a
functor M : (Fin∗)≤3 → C such that the canonical maps M (ρi) : M (〈n〉)→ M (〈1〉)
exhibit M (〈n〉) '

∏
1≤i≤n M (〈1〉) in C for all 0 ≤ n ≤ 3.

〈3〉 〈2〉 〈1〉 〈2〉 〈1〉 〈2〉 〈2〉

〈2〉 〈1〉 〈1〉 〈1〉
Assoc id id

τ

comm

Definition (∞-commutative monoid)
Let C be an ∞-category with finite products. We define an ∞-commutative monoid in
C as a functor M : N (Fin∗)→ C such that the canonical maps
M (ρi) : M (〈n〉)→M (〈1〉) exhibit M (〈n〉) '

∏
1≤i≤n M (〈1〉) in C for all n ≥ 0.
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Symmetric monoidal ∞-category

Proposition (Barkan 2022)

Let C be a complete n-category. Then CMon∞(C) ∼−→ CMonn+2(C) is categorically
equivalent.

Definition
A symmetric monoidal ∞-category is an (∞-)commutative monoid in Cat∞.

Corollary
Particularly, if a symmetric monoidal ∞-category C is a 1-category, then it is an
∞-commutative monoid in (Cat∞)≤1, which is a 2-category and written as Cat≤1. So
we have CMon∞(Cat≤1)

∼−→ CMon4(Cat≤1).

It can be checked that the 4-commutativity in Cat≤1 exactly corresponds with ordinary
coherent conditions of a symmetric monoidal category.
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Lurie’s definition
By the (un)straightening equivalence Fun(N (Fin∗),Cat∞) ' CoCart/N(Fin∗) , we get
the following equivalent definition by Lurie.

Definition
A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets
p : C⊗ → N (Fin∗) with the following property:
For each n ≥ 0, the maps

{
ρi : 〈n〉 → 〈1〉

}
1≤i≤n induce functors ρi

! : C
⊗
〈n〉 → C

⊗
〈1〉

which determine an equivalence C⊗〈n〉 ' (C⊗〈1〉)
n .

We define C⊗〈1〉 as its underlying ∞-category.

This definition has technical advantages for general ∞-operads.
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Tensor product of ∞-categories
Let K be the collection of all small simplicial sets.

Definition
Given 2 cocomplete ∞-categories C and D, we define the tensor product as a functor
C ×D → C ⊗D such that for any cocomplete E , we have
FunK(C ⊗D,E)

∼−→ FunK⊠K(C ×D,E). Such tensor product always exists because
the natural functor C ×D → PK

K⊠K(C ×D) satisfies that.

Theorem

The above gives a symmetric monoidal structure Ĉat∞(K)⊗ → N∗(Fin∗) and makes
the cocompletion funcor a symmetric monoidal adjunction Ĉat

⊗
∞ ⇄ Ĉat∞(K)⊗. So

S = P(∗) is the unit in Ĉat∞(K)⊗.
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Cocomplete symmetric monoidal structure

Remark

By (un)straightening equivalence, CAl(Ĉat∞(K)) ⊂ CAl(Ĉat∞) is the subcategory
whose objects are symmetric monoidal ∞-categories such that −⊗− preserves colimits
separately in each variable (called cocomplete symmetric monoidal categories), and
whose morphisms are colimit-preserving symmetric monoidal functors.

Corollary
The symmetric monoidal adjunction induces an adjunction between algebras
F : CAl(Ĉat∞) ⇄ CAl(Ĉat∞(K)).

Corollary

(1) The S = P(∗) is the unit in Ĉat∞(K)⊗, which means it is initial object in
CAl(Ĉat∞(K)) and hence S admits a cocomplete symmetric monoidal structure S.
(2) So for any cocomplete symmetric monoidal ∞-category, there exists essentially
unique colimit-preserving symmetric monoidal functor S⊗ → C⊗.

26 / 39



Cocomplete symmetric monoidal structure

Remark

By (un)straightening equivalence, CAl(Ĉat∞(K)) ⊂ CAl(Ĉat∞) is the subcategory
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Localization

Proposition (Localization)
Let C be an ∞-category and let L : C → C be a functor with essential image LC ⊆ C.
The following conditions are equivalent:
(1) There exists a functor f : C → D with a fully faithful right adjoint g : D → C and
an equivalence between g ◦ f and L.
(2) When regarded as a functor from C to LC,L is a left adjoint of the inclusion
LC ⊆ C.
(3) There exists a natural transformation from idC → L such that, L ◦ idC → L ◦L and
idC ◦L → L ◦ L are equivalences in Fun(C, C), i.e. an idempotent object in Fun(C, C).

Proposition

The full subcat PrL ⊂ Ĉat∞(K) is closed under tensor product and hence inherits a
symmetric monoidal structure Pr⊗L .
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Symmetric monoidal colocalization

Proposition (Symmetric monoidal colocalization)
Let C⊗ → N (Fin∗) be a symmetric monoidal ∞-category. Let D ⊆ C be a full
subcategory which is stable under equivalence. Suppose that the functor
−⊗− : C × C → C carries D ×D into D (meaning D is closed under tensor
products). Then the following hold.

1 The restricted map D⊗ → N (Fin∗) is a symmetric monoidal ∞-category.
2 The inclusion D⊗ ⊆ C⊗ is a symmetric monoidal functor.
3 Suppose that the inclusion D ⊆ C admits a right adjoint L (so that D is a

colocalization of C). Then there exists a lax-symmetric-monoidal right adjunction
L⊗ : C⊗ → D⊗.

Formally speaking, L⊗ is a right adjunction in the strict 2-category h2(Op/O⊗).

Corollary
Under assumptions of (3) above, a symmetric monoidal colocalization can induce a
colocalization on algebras CAlg(D) ⇄ CAlg(C).
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Connective cover

Corollary (t-structure and symmetric monoidal structure)
Let p : C⊗ → N (Fin∗) be a symmetric monoidal ∞-category. Assume that the
underlying ∞-category C is stable and that −⊗− is exact in each variable. We will
say that a t-structure (C≥0, C≤0) is compatible with the symmetric monoidal structure
if the functor ⊗ carries C≥0 × C≥0 into C≥0.
Then the induced map C⊗≥0 → N (Fin∗) is again a symmetric monoidal ∞-category,

and C⊗≥0 C⊗i
τ≥0

is a symmetric monoidal colocalization. Thus it further induces a

colocalization CAlg(C≥0) CAlg(C)i
τ≥0

.

Example (Connective cover of an E∞-ring)

When C = Sp we have CAlg(Sp≥0) CAlg(Sp)i
τ≥0

, which means that the

connective cover of an E∞-ring naturally inherits an E∞-structure.
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Symmetric monoidal localization

Proposition (Symmetric monoidal localization)
Let C⊗ → N (Fin∗) be a symmetric monoidal ∞-category. Let D ⊆ C be a full
subcategory. Suppose that D ⊂ C is a reflective subcategory (with a left adjoint
L : C → D). If for every pair g1, g2 of L-equivalences in C, the morphism g1 ⊗ g2 in C
is also an L-equivalence (meaning L-equivalences are closed under tensor
products), then we have the following.

1 The restricted map D⊗ → N (Fin∗) is lax-symmetric-monoidal.
2 The inclusion D⊗ ⊆ C⊗ is a symmetric monoidal functor.
3 There exists a symmetric monoidal left adjoint L⊗ : C⊗ → D⊗.

Corollary
A symmetric monoidal localization can induce a localization on algebras
CAlg(C) ⇄ CAlg(D).
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Bousfield localization
Let C⊗ be a presentably symmetric monoidal ∞-category, i.e., an object in
CAlg(PrL) ↪→ CAlg(Cat∞).

Theorem (Bousfield localization)

Let E ∈ C be an object. Then WE = {X → Y |X ⊗ E ∼−→ Y ⊗ E} ⊂ Fun(∆1, C) is a
small-generated strongly saturated collection of morphisms, which means that there
exists an accessible localization functor LE : C → C.

Furthermore, Bousfield localization is compatible with its symmetric monoidal

structure, meaning it forms a symmetric monoidal localization C⊗ C⊗E
L⊗

E

i⊗
.

Example (Bousfield localization of an E∞-ring)

When C = Sp we have CAlg(C) CAlg(CE)
CAlg(LE)

i
. This means that Bousfield

localization of an E∞-ring naturally inherits an E∞-structure.
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Idempotent object
Let C be a symmetric monoidal ∞-category.

Definition (idempotent object)
Let e : 1C → E be a morphism in C. We say e is idempotent iff 1C ⊗X → X ⊗X is
equivalent. (e.g. Z→ Z[1/p] in Ab)

Theorem (Bousfield localization with respect to an idempotent object)
Let e : 1C → E be a morphism in C, then
(1) The e is an idempotent object of C iff the transformation α : idC → lE exhibits lE
as a localization functor on C, where lE : C → C is given by the tensor product with E .
(2) If e is idempotent, then lE is exactly the Bousfield localization with respect to E ,
which has the following properties:

(a) The lE is compatible with ⊗, so induces a symmetric monoidal localization

C⊗ C⊗E
L⊗

E

i⊗
;

(b) The inclusion i⊗ is also symmetric monoidal, meaning CE is closed under tensor
products. 33 / 39



Idempotent algebra

Definition
Let C be a symmetric monoidal ∞-category. We will say that a commutative algebra
object A ∈ CAlg(C) is idempotent if unit map e : 1→ A is idempotent.

Theorem
Let C be a symmetric monoidal ∞-category with unit object 1, which we regard as a
trivial algebra object of C. Then the functor

θ : CAlgidem (C) ⊆ CAlg(C) ' CAlg(C)1/ → C1/

is fully faithful, and its essential image are idempotent objects in C, which gives an
equivalence CAlgidem (C) ∼−→ (C1/)

idem .
Furthermore, any mapping space in (C1/)

idem is either empty or contractible, i.e.
(C1/)

idem is equivalent to a partial-order set N (I ).
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Interesting applications after the internalization

Proposition

The full subcat PrL ⊂ Ĉat∞(K) is closed under tensor products (S is also the unit in
PrL) and hence inherits a symmetric monoidal structure. In fact, for any C,D ∈ PrL,
we have a natural equivalence C ⊗D ' RFun(Cop,D).

Theorem (Unique symmetric monoidal structure)

The following 4 colimit-preserving functors S
τ≤n−−→ τ≤nS, S (−)+−−−→ S∗, S

Σ∞
+−−→ Sp, and

S ∗7→Z−−−→ N (Ab) are idempotent objects in PrL.
Hence by CAlg(PrL)idem ∼−→ (PrL

S/)
idem we conclude that

S resp. S≤n , S∗, Sp, N (Ab) only admits a unique cocomplete symmetric monoidal
structure with the unit ∗ resp. ∗, S0, Σ∞S0, Z .
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Interesting applications after the internalization
By Bousfield localization with respect to idempotent objects, we have:

Corollary
The following 4 full subcategories of PrL are closed under tensor products.
(a) PrL

≤n+1 : the ∞-category of presentable (n + 1)-categories;
(b) PrL

∗ : the ∞-category of presentable pointed ∞-categories;
(c) PrL

st : the ∞-category of presentable stable ∞-categories, known as
tensor-triangulated ∞-categories or tt-∞-categories;
(d) PrL

1-ad : the ∞-category of presentable additive 1-categories.

Corollary

The localization functors PrL −⊗τ≤nS−−−−−→ PrL
≤n+1, PrL −⊗S∗−−−−→ PrL

∗ , PrL −⊗Sp−−−−→ PrL
st ,

and PrL −⊗N(Ab)−−−−−−→ PrL
1-ad correspond with the n-truncation, copointedlization,

costabilization, and 1-coadditivalization of presentable ∞-categories respectively.
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My specific interests
Use higher algebra and spectral algebraic geometry (SAG) to explore various
intersections between homotopy theory and algebraic geometry.
Example

1 A recent good example is the Chromatic Nullstellensatz by Burklund, Schlank,
and Yuan. They proved that “algebraically closed” E∞-rings in CAlg(SpT(n)) are
exactly those Lubin–Tate spectra E(L) with L an algebraically closed field. And
for any non-zero T (n)-local E∞-ring R, there exists a geometric point R→ E(L).

2 For another beautiful example, the Devinatz–Hopkins theorem LK(n)S ' EhGn
n

can be interpreted as QCoh(Spf(En)/Gn) ' SpK(n) in (formal) SAG.
3 In the framework of SAG, we can study spectral moduli problems: given an

algebro-geomtric stack M0, can we give an E∞-realization M making
π0M =M0?
It is true when M0 =Mell for the moduli stack of elliptic curves and when
M0 = XKp for some of the Shimura stacks. Then taking the global sections of
E∞-stacks respectively, we get TMF and TAF , which are intriguing E∞-rings.
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My specific interests

Orientation theory from Thom spectra
1 Quillen discovered a deep connection between (homotopy) complex orientation set

Orh(MU ,E) := HomCAlg(hSp)(MU ,E) and formal group laws over E∗, which
became the cornerstone of chromatic homotopy theory.

2 After that, Ando–Hopkins–Strickland discovered a correspondence
Orh(MU 〈6〉,E)

g3−→ C 3 (PE ; I(0)) between MU 〈6〉-orientations and cubical
structures. By uniqueness of cubical structures on any line bundle of any abelian
variety, we can endow a unique MU 〈6〉-orientation to any elliptic cohomology
theory.

E∞-enhancement of orientations
When comes to E∞-orientation space OrE∞(Mf ,R) := MapCAlg(Sp)(Mf ,R),

combining the Thom adjunction MonE∞(S)/Pic(Sp) CAlg(Sp)M(−) and the infinite
loop space machine Mongp

E∞
(S) ' Sp≥0 we can produce many interesting results.
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My specific interests

Sp≥0 Mongp
E∞

(S) MonE∞(S) CAlg(Sp)∼
GL1

Σ∞
+

Ω∞

gl1

By this adjunction we can get the following theorem.

Theorem (Ando–Blumberg–Gepner–Hopkins–Rezk)
Let Mf be the Thom E∞-spectrum induced by a map f : X → pic(Sp) in Sp≥0 and let
R be an E∞-ring. Then OrE∞(Mf ,R) is a torsor over the H-space MapSp(X , gl1(R)),
meaning OrE∞(Mf ,R) is either empty or homotopy equivalent to MapSp(X , gl1(R)).

Example
Particularly, combining with the Chromatic Nullstellensatz and some further
calculations, we can deduce that for any height = n > 0, the OrE∞(MUP,E(Fp)) is
non-empty and hence homotopy equivalent to MapSp(ku, gl1(E(Fp))).
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