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Monadicity
In classical monad theory, given a monad T ∈ Fun(C, C) it will induce a natural
adjunction C ⇄ LModT (C). The LModT (C) here is often denoted by AlgT (C) in
classical references.
Definition
Let G : D → C be a functor. We will say G is monadic iff there exists a monad
T ∈ Fun(C, C) and an equivalence G0 : D → LModT (C) such that G is equivalent to
the composition of G0 with the forgetful functor LModT (C) → C .

By remark above, any monadic functor is a right adjoint functor.

Question
Given an adjunction C ⇄F

G D, when is G monadic?

We will see that the Barr-Beck Theorem provides a full answer.



Barr-Beck Theorem

Theorem (Classical Barr-Beck Theorem)
Let G : D → C be a functor which admits a left adjoint. Then the following are
equivalent:

1 The functor G exhibits D as monadic over C.
2 There exists a monoidal category E⊗, a left action of E⊗ on C, an algebra object

A ∈ Alg(E) and an equivalence G ′ : D ' LModA(C) such that G is equivalent to
the composition of G ′ with the forgetful functor LModA(C) → C.

3 The functor G satisfies the following 2 conditions:
(a) The functor G : D → C is conservative; that is, a morphism f : Y →Y0 in D is
an equivalence if and only if G(f ) is an equivalence in C.
(b) Let V1 ⇒ V0 be a pair of morphisms of D which is G-split. Then it admits a
colimit in D, and that colimit is preserved by G.



∞-Barr-Beck Theorem

Theorem (∞-Barr-Beck Theorem)
Let G : D → C be a functor of ∞-categories which admits a left adjoint. Then the
following are equivalent:

1 The functor G exhibits D as monadic over C.
2 There exists a monoidal ∞-category E⊗, a left action of E⊗ on C, an algebra

object A ∈ Alg(E) and an equivalence G ′ : D ' LModA(C) such that G is
equivalent to the composition of G ′ with the forgetful functor LModA(C) → C.

3 The functor G satisfies the following 2 conditions:
(a) The functor G : D → C is conservative; that is, a morphism f : Y →Y0 in D is
an equivalence if and only if G(f ) is an equivalence in C .
(b) Let V∗ be a be a simplicial object of D which is G-split. Then it admits a
colimit in D, and that colimit is preserved by G.



Examples of monadicity

Example
1. Let C⊗ be a monoidal ∞-category. Then the forgetful functor A BModB(C) → C

is monadic, where the monad T is given by A ⊗ (−)⊗ B.
2. Let C,D be presentable ∞-categories and G : D → C be a functor which admits a

left adjoint. If G is monadic, then so is Sp(G) : Sp(D) → Sp(C).
3. By the fact that Ω∞ : Sp≥0 → S preserves sifted colimits (which includes

geometric realization), the forgetful functor AlgEk
(Sp≥0) → Sp≥0 → S is

monadic.
In other words, we can identify connective Ek-rings as spaces equipped with some
additional structures, i.e. Ek-(semi)ring space structure. Roughly speaking, it
consists of an addition and multiplication which satisfy the axioms for a ring
(commutative if k ≥ 2), up to coherent homotopy.



Higher Morita theory

Question
Morita theory began with a natural question: To what extent does the module
category ModR determine the ring R itself? (Also known as recognition principles)

Firstly, we can consider the realization problem: when can a category C be realized as
some module category ModR? That was answered by Schwede–Shipley.

Theorem (Schwede–Shipley 2003)
Let C be a stable ∞-category. Then C is equivalent to RModR, for some E1-ring R, if
and only if C is presentable and there exists a compact object C ∈ C which generates C
in the following sense: if D ∈ C is an object having the property that Extn

C(C ,D) ' 0
for all n ∈ Z, then D ' 0.
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Higher Morita theory
Secondly, we wish characterize functors between module categories. We begin with a
classical Morita theorem.

Theorem (classical Morita theorem)
Let R and R′ be associative rings, and let LFun (RModR,RModR′) be the category of
functors from RModR to RModR′ which preserve small colimits. Then the relative
tensor product functor ⊗R : RModR ×R BModR′ → RModR′ induces an equivalence
of categories

R BModR′ → LFun (RModR,RModR′) .

By the theorem above we can see two equivalent module categories does not imply two
equivalent rings.
Actually, this leads us to the definition of Morita equivalence between rings.



Morita equivalence

Definition (Morita equivalence)
Let C⊗ be a monoidal ∞-category compatible with geometric realization. Given
R,R′ ∈ Alg(C), we say that they are Morita equivalent iff there exists
RMR′ ∈ R BModR′ and R′NR ∈ R′ BModR such that RM ⊗R′ NR ' RRR in R BModR
and that R′N ⊗R MR′ ' R′R′

R′ in R′ BModR′ .

Definition (Morita category)
Let K be a small collection of simplicial sets which includes N(∆)op and C⊗ → Ass⊗
be a monoidal ∞-category compatible with K-colimits. For every algebra object
A ∈ Alg(C), the ∞-category RModA(C) is left-tensored over C, and can therefore be
identified with a left C-module object of Cat∞(K).
We let Morita(C) denote the full subcategory of LModC (Cat∞(K)) spanned by
objects of the form RModA(C), where A ∈ Alg(C). We will refer to Morita(C) as the
Morita ∞-category of C.



Formal and general arguments

Definition
1. Let CatAlg

∞ (K) be the large ∞-category (informally) described as follows:
- objects are pairs (C⊗,A) where C⊗ is a monoidal ∞-category compatible with
K-colimits and A ∈ Alg(C).
- a morphism from (C⊗,A) to (D⊗,B) is a monoidal functor F : C⊗ → D⊗

preserving K-colimits and a morphism F(A) → B in Alg(D).
2. Let CatMod

∞ (K) be the large ∞-category (informally) described as follows:
- objects are pairs (C⊗,M) where M is left-tensored over C where tensor product
is compatible with K-colimits.
- a morphism from (C⊗,M) to (D⊗,N ) is a monoidal functor F : C⊗ → D⊗

preserving K-colimits and a C-linear functor M → N in Alg(D).

Proposition
The natural forgetful functors CatAlg

∞ (K) → MonK
Ass (Cat∞) and

CatMod
∞ (K) → MonK

Ass (Cat∞) are coCartesian fibrations.



We can define a functor Θ : CatAlg
∞ (K) → CatMod

∞ (K) by (C⊗,A) 7→ RModA(C),
where the ∞-category RModA(C) of right A-module objects of C is viewed as an
∞-category left-tensored over C.

Proposition
The construction Θ above is a coCartesian-preserving functor,

CatAlg
∞ (K) CatMod

∞ (K)

MonK
Ass (Cat∞)

Θ

whose restriction on the fiber of any C⊗ ∈ MonK
Ass (Cat∞) gives a functor

Alg(C) ΘC−−→ LModC(CatK∞).

The essential image of ΘC is exactly the Morita category of C. Roughly speaking,
Morita theory is to study the properties of the functor Θ.



Lemma
Let K be a small collection of simplicial sets. Let S(K) ⊂ S be the maximal full
subcategory containing ∆0 and closed under K-colimits, which inherits a Cartesian
monoidal structure from S and we denote as S(K)×. Then the pair (S(K)×, 1) is an
initial object of CatAlg

∞ (K).

Definition
It follows the Lemma that the forgetful functor θ : CatAlg

∞ (K)(S(K)×,1)/ → CatAlg
∞ (K) is

a trivial Kan fibration. We let Θ∗ denote the composition

CatAlg
∞ (K) ' CatAlg

∞ (K)(S(K)×,1)
Θ−→ CatMod

∞ (K)M/

where the first map is given by a section of θ and M = Θ(S(K)×, 1) = (S(K)×,S(K)).



An object of the ∞-category CatMod
∞ (K)M/ is given by a morphism (S(K)×,S(K)) →

(C⊗,M) in CatMod
∞ (K), given by the unique monoidal functor S(K)× → C⊗ which

preserves K-indexed colimits together with a functor f : S(K) → M which preserves
K-indexed colimits. Such a functor is determined uniquely up to equivalence by the
object f

(
∆0

)
∈ M.

Consequently, we can informally regard CatMod
∞ (K)M/ as an ∞-category whose objects

are triples (C⊗,M,M ), where (C⊗,M) ∈ CatMod
∞ (K) and M ∈ M is an object.

Theorem
Let K be a small collection of simplicial sets containing N(∆)op. Then the functor
Θ∗ : CatAlg

∞ (K) → CatMod
∞ (K)M/ is fully faithful. Therefore when it restricts on any

fiber C⊗ ∈ MonK
Ass (Cat∞), the

Alg(C) −→ LModC(CatK∞)C/

informally given by A 7→ C −⊗A−−−→ RModA(C), is also fully faithful .

In this sense of the full subcategory, algebras are determined by there module
categories.



Essential image of Θ
By Barr-Beck theorem it is not hard to describe the essential image of Θ.

Theorem
Let C be a monoidal ∞-category. Assume that C admits N(∆)op-colimits and that the
tensor product C × C → C preserves N(∆)op-colimits. Let M be an ∞-category
left-tensored over C and let M ∈ M be an object. Then there exists an algebra object
A ∈ Alg(C) and an equivalence RModA(C) ' M of ∞-categories left-tensored over C
which carries A to M if and only if the following conditions are satisfied:
(1) The ∞-category M admits N(∆)op-colimits. And the action map C ×M → M
preserves N(∆)op-colimits.
(2) The functor F : C → M given by F(C ) = C ⊗ M admits a right adjoint G such
that G is conservative and preserves N(∆)op-colimits.
(3) For every object N ∈ M and every object C ∈ C, the evident map
F(C ⊗ G(N )) ' C ⊗ G(N )⊗ M ' C ⊗ FG(N ) → C ⊗ N is adjoint to an
equivalence C ⊗ G(N )

∼−→ G(C ⊗ N ).

In this case, we actually have A ' EndM(M ).



Universal properties of RModA(C )

Theorem
Let K be a collection of simplicial sets which includes N(∆)op, let C⊗ be a monoidal
∞-category, and M an ∞-category left-tensored over C. Assume that C and M admit
K-indexed colimits, and that the tensor product functors C × C → C and C ×M → M
preserve K-indexed colimits separately in each variable. Let A be an algebra object of
C, and let θ denote the composition

LinFunK
C (RModA(C),M) ⊆ LinFunC (RModA(C),M)

θ′−→ Fun (LModA (RModA(C)) ,LModA(M))

θ′′−→ LModA(M),

where θ′′ is given by evaluation at the A-bimodule given by AAA. Then θ is an
equivalence of ∞-categories.



Universal properties of RModA(C )

Corollary
Particularly, when M = RModB(C) we have an equivalence of ∞-categories
LinFunC (RModA(C),RModB(C)) ' LModA (RModB(C)) ' A BModB(C)..

That is, every C-linear functor from RModA(C) to RModB(C) which preserves
K-indexed colimits is given by the formula M 7→ M ⊗A K , for some bimodule object
AKB ∈ A BModB(C). It follows from this description that Morita(C) is independent of
the choice of K, so long as K includes N(∆)op.

Proposition
The equivalence above satisfies the composition law

C BModB(C)× B BModA(C) LinFunC (RModC (C),RModB(C))× LinFunC (RModB(C),RModA(C))

C BModA(C) LinFunC (RModC (C),RModA(C))



Now we can give a good description of Morita category.

Definition
Define a new hS-enriched category Morita′(C) as follows:
- objects are algebra objects A ∈ Alg(C).
- Given a pair of objects A,B ∈ Alg(C), the mapping space MapMorita′(C)(A,B) can
be identified with the Kan complex A BModB(C)≃.
- Given a triple of objects A,B,C ∈ Alg(C), the composition law

C BModB(C)≃ × B BModA(C)≃ → C BModA(C)≃

is given by (M ,N ) 7→ M ⊗B N .

Corollary
The natural enriched functor Morita′(C) → h Morita(C) is an equivalence of
hS-enriched categories.



Brauer ∞-group
Actually, Morita(C) is the underlying (∞, 1)-category of the (∞, 2)-category
MORITA(C), whose mapping ∞-categories are A BModB(C).

Definition (Brauer space)
We define the (big) Brauer space Br(C) with respect to C⊗ as Morita(C)≃, i.e. the
underlying (∞, 0)-category, also known as the maximal Kan complex.

It is often know that there is a group structure, called the Brauer group. Actually we
will see that Br(C) has a natural group-like E∞-structure, therefore π0Br(C) is indeed
a (big) group. But before that, we need to introduce monoidal Morita theory.

Proposition
The Θ : CatAlg

∞ (K) → CatMod
∞ (K) can be naturally enhanced to a symmetric monoidal

functor Θ⊗ : CatAlg
∞ (K)⊗ → CatMod

∞ (K)⊗, whose restriction on each fiber of C⊗ is a
symmetric monoidal functor Θ⊗

C : Alg(C)⊗ → LModC (Cat∞(K))⊗, informally given
by A 7→ RModA(C)⊗.



Brauer ∞-group

Definition
The monoidal enhancement makes Br(C) ⊂ Morita(C) ⊂ LModC (Cat∞(K)) inherit a
natural symmetric monoidal structure, denoted as Br(C)⊗ and Morita(C)⊗.
By the natural equivalence CAlg(S) ' Mon(S) between E∞-spaces and symmetric
monoidal groupoids, the Br(C)⊗ naturally corresponds an E∞-space.

Now we turn to the case of E∞-rings.

Definition
Let R be an E∞-ring. Taking C⊗ = Mod⊗

R we get a symmetric monoidal functor
Θ⊗

ModR
: Alg⊗R = Alg(ModR)

⊗ → LModModR

(
PrL)⊗ = LModModR

(
PrL

st
)⊗

= Cat⊗R,
where the latter is often called R-linear categories, informally given by A 7→ RMod⊗

A.
Because all RModA are compactly generated, Θ⊗

ModR
factors through Alg⊗R → Cat⊗R,ω,

where Cat⊗R,ω is the category of compactly generated R-linear categories.



Azumaya algebras
Now we introduce Azumaya algebras and (small) Brauer groups.

Definition
Let R be an E∞-ring. An R-algebra A is an Azumaya R-algebra if A is a compact
generator of ModR and if the natural R-algebra map

A ⊗R Aop → EndR(A)

is an equivalence of R-algebras.

Note that if A is an Azumaya R-algebra, then, by definition, A ⊗R Aop is Morita
equivalent to R. The standard example of an Azumaya algebra is the endomorphism
algebra EndR(P) of a compact generator P ∈ ModR.

Theorem (Toën 2012)
If R = Hk, where k is an algebraically closed field, then every Azumaya R-algebra is
Morita equivalent to R.



Azumaya algebras

Proposition
Let A be an R-algebra. Then, A is compact in AlgR if and only if ModA is compact in
the CatR,ω.

Corollary
Compactness in AlgR is a Morita-invariant property.

Theorem (Antieau–Gepner 2012)
Let C ∈ CatR,ω. Then it is invertible in CatR,ω if and only if C is equivalent to ModA
for an Azumaya R-algebra A.

This leads to small Brauer groups.
Proposition
The image of Azumaya algebras under Θ⊗

ModR
: Alg⊗R → Cat⊗R,ω is exactly those

invertible objects CatR,ω.



Definition
We define the (small) Brauer space Br(R) as the essential image of Azumaya algebras
in Br(R). By the previous argument, we have the following chain of symmetric
submonoidal categories.

Br(R)⊗ ⊂ Br(R)⊗ ⊂ Morita(R)⊗ ⊂ Cat⊗R

That makes Br(R) become an E∞-space. And we have Br(R) ' Pic(CatR,ω) as
group-like E∞-spaces.

Theorem (Antieau–Gepner 2012)
For R a connective E∞ ring, any Azumaya R-algebra A is étale locally trivial: there is
an étale cover R → S such that A ⊗R S is morita equivalent to S .

Theorem (Antieau–Gepner 2012)

For R a connective E∞ ring, the functor Br : CAlg≥0
R → Gpd∞ restricting on

connective E∞-R-algebras is a sheaf for the étale topology.



Calculation

Theorem (Antieau–Gepner 2012)
Let X be an object of Shvet

R . Then, there is a conditionally convergent spectral
sequence

Ep,q
2 =

{
Hp

et (X , πqBr) p ≤ q
0 p > q ⇒ πq−pBr(X)

with differentials dr of degree (r , r − 1). If X is affine or discrete, then the spectral
sequence converges completely.

Proof. Because the Brauer sheaf Br is hypercomplete, the map from Br to the limit of
its Postnikov tower Br → limn τ≤nBr is an equivalence. Taking sections preserves
limits, so that

Br(X) → lim
n

(τ≤nBr) (X)

is also an equivalence. Thus, Br(X) is the limit of a tower, and to any such tower
there is an associated spectral sequence.



Calculation
If X is affine or discrete, then the spectral sequence degenerates at some finite page.
And if X is discrete the spectral sequence collapses entirely at the E2-page. So,
suppose that X = Spec S . Then, Br(X) can be computed on the small étale site on
Spec S . But, as mentioned above, this site is the nerve of a discrete category, the
small étale site on Specπ0S . Therefore, Hp

et (Spec S , πqBr) ∼= Hp
et (Specπ0S , πqBr).

Corollary (Antieau–Gepner 2012)
If R is a connective E∞-ring, then the homotopy groups of Br(R) are described by

πkBr(R) ∼=


H1

et (Specπ0R,Z)× H2
et (Specπ0R,Gm) k = 0

H0
et (Specπ0R,Z)× H1

et (Specπ0R,Gm) k = 1

π0R× k = 2

πk−2R k ≥ 3.

Corollary (Antieau–Gepner 2012)
The Brauer E∞-group Br(S) of the sphere spectrum S is zero, i.e. its underlying space
is contractable.


