Picard ∞ -groupoids, Picard groups of \mathbb{E}_{∞} -rings and generalized Thom spectra

Jiacheng Liang

Southern University of Science and Technology

April 23, 2024

Picard categories and Picard spaces

Let C be an (ordinary) monoidal category.

Definition (invertible objects)

An object X is invertible iff there exists $Y \in C$ such that $X \otimes Y \simeq 1 \simeq Y \otimes X$.

The monoidal structure makes the equivalence classes $\pi_0 C$ a monoid set. So equivalently, $X \in C$ is invertible iff $[X] \in \pi_0 C$ is an invertible element.

Definition (Classical)

(i) The Picard category $\mathcal{P}IC(\mathcal{C})$ is the full monoidal subcategory that consists of invertible objects in \mathcal{C} . (ii) The Picard groupoid $\mathcal{P}ic(\mathcal{C})$ is the maximal groupoid (also named the core) $\mathcal{P}IC(\mathcal{C})^{\simeq} \subset \mathcal{P}IC(\mathcal{C})$. The $\mathcal{P}ic(\mathcal{C})$ also admits a natural monoidal structure. (iii) The Picard group of \mathcal{C} is the $\pi_0 \mathcal{P}ic(\mathcal{C})$, which is exactly the maximal subgroup $\pi_0 \mathcal{P}ic(\mathcal{C}) \subset \pi_0 \mathcal{C}$.

Apparently, when C is symmetric monoidal, the $\pi_0 \mathcal{P}ic(C)$ and $\pi_0 \mathcal{C}$ are abelian.

Picard ∞-groupoids

Let C^{\otimes} be an \mathbb{E}_k -monoidal ∞ -category, where $1 \leq k \leq \infty$. Our most cared cases are k = 1 and $k = \infty$ which correspond monoidal and symmetric monoidal respectively.

Definition

(i) The Picard category $\mathcal{P}IC(\mathcal{C})^{\otimes}$ is the full \mathbb{E}_k -monoidal subcategory that consists of invertible objects in \mathcal{C} .

(ii) The Picard ∞-groupoid (Picard space) *Pic(C)* is the core of *PIC(C)*. The *Pic(C)* also admits a natural E_k-monoidal structure *Pic(C)*[⊗].
(iii) The Picard group of C[⊗] is the π₀*Pic(C)*.

Proposition (*)

By straightening-unstraightening equivalence, we have a natural equivalence of ∞ -categories $\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S}) \simeq \operatorname{Grpd}_{\mathbb{E}_k,\otimes}$. That means we can identify \mathbb{E}_k -monoidal ∞ -groupoids with \mathbb{E}_k -spaces!

So we can identify $\mathcal{P}ic(\mathcal{C})^{\otimes}$ as an \mathbb{E}_k -space. Even more, it is a **group-like** \mathbb{E}_k -space, meaning its π_0 is a group. Besides, when $k \geq 2$ the group $\operatorname{Pic}(\mathcal{C})$ is abelian.

Higher Picard groups

We can also describe the higher homotopy groups of the $\mathcal{P}ic(\mathcal{C})$ for a symmetric monoidal ∞ -category \mathcal{C}^{\otimes} .

Definition

Since C is symmetric monoidal, the full subcategory $B \operatorname{End}(1) \subset \mathcal{P}IC(\mathcal{C})$ consisting of just one object 1 is canonically a symmetric monoidal ∞ -category. And $B\operatorname{Aut}(1) = B\operatorname{End}(1)^{\simeq} \subset \mathcal{P}ic(\mathcal{C})$ is an \mathbb{E}_{∞} -space.

Since

 $\Omega \mathcal{P}ic(\mathcal{C}) \simeq \operatorname{Aut}(\mathbf{1})$

we get the relations

 $\pi_1(\mathcal{P}ic(\mathcal{C}), \mathbf{1}) = \pi_0(\mathrm{End}(\mathbf{1}), \mathrm{id}_{\mathbf{1}})^{\times} \quad \text{ and } \quad \pi_i(\mathcal{P}ic(\mathcal{C}), \mathbf{1}) = \pi_{i-1}(\mathrm{End}(\mathbf{1}), \mathrm{id}_{\mathbf{1}}) \quad \text{ for } i \geq 2.$

k-spaces

Definition

Group-like

An \mathbb{E}_k -space X is said to be group-like if the underlying H-space is an H-group.

Proposition

Let M be an H-space (i.e. a monoid object in hS). Then it is an H-group iff the monoid $\pi_0 M$ is a group.

So we can equivalently replace the group-like condition above into that π_0 is a group.

Proposition

For an \mathbb{E}_k -space X, there is a maximal grouplike subspace $\operatorname{GL}_1 X$. That is, the inclusion

$$\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S}) \xleftarrow{i}_{GL_{1}} \operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})$$

of grouplike \mathbb{E}_k -spaces into \mathbb{E}_k -spaces has a right adjoint GL_1 given by passage to the maximal grouplike \mathbb{E}_k -space.

Theorem (Higher Algebra 5.2.6)

Let $0 < k < \infty$, and let $S_*^{\geq k}$ denote the full subcategory of S_* spanned by the *k*-connective pointed spaces. Then The free functor $\beta_k : S_* \simeq \operatorname{Mon}_{\mathbb{E}_0}(S) \to \operatorname{Mon}_{\mathbb{E}_k}(S)$ is fully faithful when restricted to $S_*^{\geq k}$ and induces an equivalence

 $\mathcal{S}^{\geq k}_{*} \xrightarrow{\sim} \operatorname{Mon}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S}) \subseteq \operatorname{Mon}_{\mathbb{E}_{k}}(\mathcal{S})$

to the full sub ∞ -category spanned by the grouplike \mathbb{E}_k -spaces.

Theorem

When $k = \infty$ we can get the classical infinite loop space machine by passage the equivalences above to limit. That is, we have the following natural equivalence.

 $\operatorname{Sp}_{\geq 0} \xrightarrow{\sim} \operatorname{Mon}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S})$

Picard spectra and Picard groups of $\mathbb{E}_{\infty}\text{-rings}$

Definition

Let \mathcal{C}^{\otimes} be a presentably symmetric monoidal ∞ -category. Then by infinite loop space machine we can identify the group-like \mathbb{E}_{∞} space $\mathcal{P}ic(\mathcal{C})^{\otimes}$ with a connective spectrum $\operatorname{pic}(\mathcal{C})$, called the Picard spectrum.

Definition

Let R be an \mathbb{E}_{∞} -ring. We write

 $\mathcal{P}ic(R) \stackrel{\mathsf{def}}{=} \mathcal{P}ic(\mathrm{Mod}(R)) \text{ and } \mathrm{pic}(R) \stackrel{\mathsf{def}}{=} \mathrm{pic}(\mathrm{Mod}(R)).$

In particular, the homotopy groups of $\mathcal{P}ic(R)$ look very much like those of R (with a shift), starting at π_2 . In fact, we have natural equivalences of spaces

 $\Omega \mathcal{P}ic(R) \simeq \operatorname{Aut}(R) = \operatorname{GL}_1 R \quad \text{and} \quad \tau_{\geq 1} \operatorname{GL}_1 R \simeq \tau_{\geq 1} \Omega^{\infty} R.$

and isomorphisms of abelian groups

 $\pi_1 \mathcal{P}ic(R) = \pi_0(R)^{\times} \quad \text{ and } \quad \pi_i \mathcal{P}ic(R) = \pi_{i-1}(R) \quad \text{ for } i \geq 2.$

Fundamental property of Picard spaces of \mathbb{E}_{∞} -rings

Unlike the group-valued functor $\pi_0 \mathcal{P}ic$, both $\mathcal{P}ic$ and pic have the fundamental property that they commute with homotopy limits.

Definition (faithfully flat)

We say that a map $R \to R'$ of \mathbb{E}_{∞} -rings is faithfully flat if the map $\pi_0 R \to \pi_0 R'$ is faithfully flat and the natural map $\pi_* R \otimes_{\pi_0 R} \pi_0 R' \to \pi_* R'$ is an isomorphism.

Theorem (DAG VII, Lurie 2011)

Suppose $R \to R'$ is a faithfully flat morphism of \mathbb{E}_{∞} -rings. Then the symmetric monoidal ∞ -category Mod(R) can be recovered as the limit of the cosimplicial diagram of symmetric monoidal ∞ -categories

$$\operatorname{Mod}\left(R'\right) \Longrightarrow \operatorname{Mod}\left(R' \otimes_{R} R'\right) \Longrightarrow \cdots$$

Fundamental property of Picard spaces of \mathbb{E}_{∞} -rings

So when comes to the Picard functor, the theory of faithfully flat descent goes into effect.

Corollary

As a result, $\mathcal{P}ic(R)$ can be recovered as a totalization of spaces,

 $\mathcal{P}ic(R) \simeq \operatorname{Tot}\left(\mathcal{P}ic\left(R^{\prime\otimes(\bullet+1)}\right)\right).$

Equivalently, one has an equivalence of connective spectra

 $\operatorname{pic}(R) \simeq \tau_{\geq 0} \operatorname{Tot}\left(\operatorname{pic}\left(R^{\otimes (\bullet+1)}\right)\right).$

The Picard functor also commutes with filtered colimits.

Theorem (Mathew–Stojanoska 2016)

The functor $\operatorname{Alg}_{\mathbb{E}_{\infty}}(Sp) \to S$ given by $R \mapsto \mathcal{P}ic(R)$ commutes with filtered colimits. And hence the composition $\operatorname{Alg}_{\mathbb{E}_{\infty}}(Sp) \to \operatorname{N}(Set)$ given by $R \mapsto \pi_0 \mathcal{P}ic(R)$ also commutes with filtered colimits.

Algebraic approximation

Definition

Let R be an \mathbb{E}_{∞} -ring. There is a monomorphism

```
\Phi: \pi_0 \mathcal{P}ic\left(R_*\right) \to \pi_0 \mathcal{P}ic\left(R\right),
```

constructed as follows.

If M_* is an invertible R_* -module, it has to be finitely generated and projective of rank one. Consequently, there is a projection p_* with a section s_* :

$$F_* \stackrel{s_*}{\underset{p_*}{\overset{s_*}{\rightarrowtail}}} M_*$$

where F_* can be realized as a finite wedge sum of copies of R or its suspensions. Let e_* be the idempotent given by composition $s_* \circ p_*$. Since F is free over R, e_* can be realized as an idempotent R-module map $e: F \to F$. Define M to be the colimit of the sequence $F \xrightarrow{e} F \xrightarrow{e} \cdots$.

Definition

Given an \mathbb{E}_{∞} -ring, when $\Phi: \pi_0 \mathcal{P}ic(R_*) \to \pi_0 \mathcal{P}ic(R)$ is an isomorphism, we say that R is Picard-algebraic.

Theorem (Mathew–Stojanoska 2016)

- **1** Suppose R is a connective \mathbb{E}_{∞} -ring. Then R is Picard-algebraic.
- Suppose R is a weakly even periodic \mathbb{E}_{∞} -ring with $\pi_0 R$ a regular noetherian ring. We have the following:
 - (i) The R is Picard-algebraic.

(ii) If further R is Landweber exact, Let $n \ge 1$ be an integer, and let L_n denote localization with respect to the Lubin-Tate spectrum E_n . Then the Picard group of $L_n R$ is $\operatorname{Pic}(L_n R) = \operatorname{Pic}(\pi_* R) \times \pi_{-1}(L_n R)$, where we denote $\operatorname{Pic} as \pi_0 \mathcal{P}ic$. Besides, $\operatorname{Pic}(\pi_* R)$ sits in an extension $0 \to \operatorname{Pic}(\pi_0 R) \to \operatorname{Pic}(\pi_* R) \to \mathbb{Z}/2 \to 0$, which is split if R is strongly even periodic.

Definition

Suppose that ${\cal C}$ is a symmetric monoidal stable $\infty\mbox{-category}$ such that the tensor product commutes with finite colimits in each variable. Then one has a natural homomorphism

 $\mathbb{Z} \to \operatorname{Pic}(\mathcal{C})$

sending $n \mapsto \Sigma^n \mathbf{1}$.

Example (Bott periodicity)

- The KU is an even periodic \mathbb{E}_{∞} -ring with a regular noetherian π_0 , so it is Picard-algebraic. Then $\operatorname{Pic}(KU) = \operatorname{Pic}(\mathbb{Z}[u^{\pm}]_*) \simeq \mathbb{Z}/2$ generated by ΣKU .
- By $KO \simeq KU^{hC_2}$ and the homotopy fixed point spectral sequence $H^s(C_2, \pi_t \operatorname{pic}(KU)) \Rightarrow \pi_{t-s} \operatorname{pic}(KO)$, we can calculate that $\operatorname{Pic}(KO) \simeq \mathbb{Z}/8$ generated by ΣKO .

Theorem (Sphere spectrum)

Let Sp be the ∞ -category of spectra with the smash product. Then $\operatorname{Pic}(Sp) = \operatorname{Pic}(\mathbb{S}) \simeq \mathbb{Z}$, generated by the suspension $\Sigma^1 \mathbb{S}$.

A quick proof: If $T \in \text{Sp}$ is invertible, so that there exists a spectrum T' such that $T \wedge T' \simeq S$, then we need to show that T is a suspension of S.

Since the unit object $S \in Sp$ is compact, it follows that T is compact: that is, it is a finite spectrum. By suspending or desuspending, we may assume that T is connective, and that $\pi_0 T \neq 0$.

By the Künneth formula, it follows easily that $H_*(T; F)$ is concentrated in the dimension 0 for each field F. Since $H_*(T; \mathbb{Z})$ is finitely generated, an argument with the universal coefficient theorem implies that $H_*(T; \mathbb{Z})$ is torsion-free of rank 1 : i.e. $H_0(T; \mathbb{Z}) \simeq \mathbb{Z}$. By the Hurewicz theorem, $T \simeq S$.

Corollary

By the Picard-algebraic property of \mathbb{S} , we have $\operatorname{Pic}(\pi_*\mathbb{S}) \simeq \operatorname{Pic}(\mathbb{S}) \simeq \mathbb{Z}$.

Theorem (Picard descent spectral sequence, Gepner–Lawson 2016)

Suppose that X is a regular Deligne-Mumford stack with a quasi-affine flat map $X \to M_{FG}$, and suppose \mathfrak{X} is an even periodic realization of X. Then there is a spectral sequence with

$$E_2^{s,t} = \begin{cases} H^s(X, \mathbb{Z}/2) & \text{if } t = 0\\ H^s\left(X, \mathcal{O}_X^{\times}\right) & \text{if } t = 1,\\ H^s\left(X, \omega^{(t-1)/2}\right) & \text{if } t \ge 3 \text{ is odd}\\ 0 & \text{otherwise,} \end{cases}$$

whose abutment is $\pi_{t-s} \operatorname{pic} \Gamma(\mathfrak{X}, \mathcal{O}^{top})$. The differentials run $d_r : E_r^{s,t} \to E^{s+r,t+r-1}$.

Theorem (Mathew–Stojanoska 2016)

The Picard group of integral TMF is $\mathbb{Z}/576$, generated by ΣTMF .

A quick proof: We can use étale descent to produce the spectral sequence, as TMF is obtained as the global sections of the sheaf \mathcal{O}^{top} of even-periodic E_{∞} -rings on the moduli stack of elliptic curves. Namely, by the fact that the map $M_{\text{ell}} \rightarrow M_{\text{FG}}$ is affine, the spectral sequence is

$$H^{s}(M_{\text{ell}}, \pi_{t} \operatorname{pic} \mathcal{O}^{\mathsf{top}}) \Rightarrow \pi_{t-s} \operatorname{pic} \Gamma(M_{\text{ell}}, \mathcal{O}^{\mathsf{top}}) = \pi_{t-s} \operatorname{pic}(TMF),$$

and we are interested in $\pi_0.$ The $E_2\text{-page}$ of this spectral sequence is given by (for $t-s\geq 0$)

$$E_2^{s,t} = \begin{cases} \mathbb{Z}/2 & \text{if } t = s = 0, \\ H^s \left(M_{\text{ell}}, \mathcal{O}_{M_{\text{ell}}}^{\times} \right) & \text{if } t = 1, \\ H^s \left(M_{\text{ell}}, \omega^{(t-1)/2} \right) & \text{if } t \ge 3 \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

Over a field k of characteristic $\neq 2, 3$, Mumford showed that

$$H^1\left(\left(M_{ ext{ell}}
ight)_k, \mathcal{O}_{M_{ ext{ell}}}^{ imes}
ight) \simeq \mathbb{Z}/12,$$

generated by the canonical line bundle ω that assigns to an elliptic curve the dual of its Lie algebra. This result is also true over \mathbb{Z} by the work of Fulton and Olsson.

Actually, the differentials involving 3-torsion classes wipe out everything above the s = 5 line, and those involving 2-torsion classes wipe out everything above the s = 7 line. We conclude that the following are the only groups that can survive:

- at most a group of order 2 in (t s, s) = (0, 0),
- at most a group of order 12 in (0,1),
- at most a group of order 12 in (0,5), and
- at most a group of order 2 in (0,7).

This gives us an upper bound $2^{6}3^{2} = 576$ on the cardinality of π_{0} , which is exactly the periodicity of *TMF*.

Theorem (Mathew–Stojanoska 2016)

The Picard group of integral Tmf is $\mathbb{Z} \oplus \mathbb{Z}/24$, generated by ΣTmf and a certain 24-torsion.

The relevant part of the Picard descent spectral sequence is similar to that of TMF, with the following exceptions: the algebraic part $H^1(\overline{M}_{ell}, \mathcal{O}^{\times})$ is now \mathbb{Z} generated by ω , according to Fulton–Olsson, and we have

- at most a group of order 2 in (t-s,s)=(0,0),
- a subquotient of \mathbb{Z} in (0,1),
- at most a group of order 12 in (0,5), and
- at most a group of order 2 in (0,7)

as potential contributions to the s = t line of the E_{∞} -page.

The rest of the E_{∞} -filtration now tells us that Pic(Tmf) sits in an extension

 $0 \to A \to \operatorname{Pic}(\operatorname{Tmf}) \to \mathbb{Z} \to 0,$

where A is a finite group of order at most 24, actually $\mathbb{Z}/24$. So $\operatorname{Pic}(\operatorname{Tmf}) \simeq \mathbb{Z} \oplus \mathbb{Z}/24$.

Definition (Classical Thom spectrum functor)

Let $(f:X \to BO) \in S_{/BO}$, then the standard filtration $X_n = f^{-1}(BO_n)$ induces a Thom spectrum given by

 $M(X)_n = \operatorname{Th}(E(X_n)) = D(X_n)/S(X_n).$

In the ∞ -categorical view, this process is exactly equivalent to taking the homotopy colimit of the diagram $\mathcal{L}_f : X \to BO \to BGL_1(\mathbb{S}) \subset \mathcal{P}ic(\mathbb{S}) \hookrightarrow \operatorname{Mod}_{\mathbb{S}} \simeq Sp$, namely $M(X) \simeq \operatorname{hocolim}_{\alpha \in X} \mathcal{L}_{\alpha}$ taken in Sp. That leads to the following ∞ -categorical definition.

Definition (∞ -categorical definition)

Let \mathcal{C}^{\otimes} be a presentably \mathbb{E}_k -monoidal ∞ -category. We define the generalized Thom spectrum functor $M : S_{/\mathcal{P}ic(\mathcal{C})} \to \mathcal{C}$ as given by $(\mathcal{L} : X \to \mathcal{P}ic(\mathcal{C})) \mapsto \operatorname{colim}_{\alpha \in X} \mathcal{L}(\alpha)$ taken in \mathcal{C} .

Universal property of the Picard space

We firstly solve a technical problem about the smallness of the Picard group. Let C^{\otimes} be an \mathbb{E}_k -monoidal ∞ -category, where $1 \leq k \leq \infty$.

Proposition

If \mathcal{C}^{\otimes} is presentably \mathbb{E}_k -monoidal, then there exists an uncountable regular cardinal κ such that $\mathcal{P}IC(\mathcal{C}) \subset \mathcal{C}^{\kappa}$ all invertible objects are κ -compact. Hence $\mathcal{P}IC(\mathcal{C})$ and $\mathcal{P}ic(\mathcal{C})$ are small (∞ -categories).

Now we claim that the Picard space functor is a right adjoint to the presheaf functor.

Theorem (Ando-Blumberg-Gepner 2018)

The picard space functor induces the following adjunction

$$\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S}) \xrightarrow{\operatorname{PSh}} \operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{\operatorname{L}})$$

where the presheaf functor PSh is given by $K \mapsto \operatorname{Fun}(K^{op}, \mathcal{S})$.

A sketch of the proof

The $\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S}) \xrightarrow{\operatorname{PSh}}_{\overline{\mathcal{P}ic}} \operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{L})$ is an adjunction. Proof: Let $G^{\otimes} \in \operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S})$ and $\mathcal{C}^{\otimes} \in \operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{L})$. Then we have $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{L})}(\operatorname{PSh}(G)^{\otimes}, \mathcal{C}^{\otimes}) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\widetilde{\operatorname{Cat}}_{\infty})}(G^{\otimes}, \mathcal{C}^{\otimes})$

by the universal property of Yoneda embedding. Secondly we have

$$Map_{\mathrm{Alg}_{\mathbb{E}_{k}}(\widehat{\mathrm{Cat}}_{\infty})}(G^{\otimes},\mathcal{C}^{\otimes}) \simeq Map_{\mathrm{Alg}_{\mathbb{E}_{k}}(\widehat{\mathcal{S}})}(G^{\otimes},\mathcal{C}^{\simeq,\otimes})$$

by the property of the maximal groupoid. Thirdly we have

$$Map_{\operatorname{Alg}_{\mathbb{E}_{k}}(\widehat{\mathcal{S}})}(G^{\otimes}, \mathcal{C}^{\simeq, \otimes}) \simeq Map_{\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S})}(G^{\otimes}, \mathcal{P}ic(\mathcal{C})^{\otimes})$$

since an \mathbb{E}_k -monoidal functor maps invertible objects into invertible objects. Combining all above, we have a natural equivalence

$$Map_{\operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{\operatorname{L}})}(\operatorname{PSh}(G)^{\otimes}, \mathcal{C}^{\otimes}) \simeq Map_{\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S})}(G^{\otimes}, \mathcal{P}ic(\mathcal{C})^{\otimes}).$$

Generalized Thom spectrum functor

Let $\mathcal{C}^{\otimes} \in \operatorname{Alg}_{\mathbb{E}_k}(\operatorname{Pr}^{\operatorname{L}})$ be a presentably \mathbb{E}_k -monoidal ∞ -category.

Definition

By the adjunction $\operatorname{Alg}_{\mathbb{E}_{k}}^{\operatorname{gp}}(\mathcal{S}) \xrightarrow{\operatorname{PSh}} \operatorname{Alg}_{\mathbb{E}_{k}}(\operatorname{Pr}^{L})$, we have the natural counit map $\operatorname{PSh}(\mathcal{P}ic(\mathcal{C}))^{\otimes} \to \mathcal{C}^{\otimes}$, which is a colimit-preserving \mathbb{E}_{k} -monoidal functor.

By unstraightening we get natural equivalences of ∞ -categories $PSh(X) \simeq RFib_{/X} = KanFib_{/X} \xrightarrow{\sim} S_{/X}$ for any space $X \in S$. This can be promoted as an \mathbb{E}_k -monoidal equivalence $PSh(X)^{\otimes} \simeq S_{/X}^{\otimes}$ when X is an \mathbb{E}_k -space.

Definition (Monoidal enhancement)

By the identification above we have the natural colimit-preserving \mathbb{E}_k -monoidal functor $M^{\otimes}: S^{\otimes}_{/\mathcal{P}ic(\mathcal{C})} \simeq \mathrm{PSh}(\mathcal{P}ic(\mathcal{C}))^{\otimes} \to \mathcal{C}^{\otimes}$, which makes the generalized Thom spectrum functor M monoidal.

Generalized orientation theory

Definition

Let $A \in \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})$. We define the \mathbb{E}_k -spaces $BGL_1(\mathbf{1}_{\mathcal{C}})_{\downarrow A}$ and $\mathcal{P}ic(\mathcal{C})_{\downarrow A}$ by requiring the following squares to be pullbacks of \mathbb{E}_k -monoidal ∞ -categories.

Theorem (Camarena-Barthel 2018)

The pair $\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})_{/\mathcal{P}ic(\mathcal{C})} \xrightarrow{M} \operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{C})$ is an adjunction. So we have a natural equivalence of spaces $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{C})}(M(X), A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})_{/\mathcal{P}ic(\mathcal{C})}}(X, \mathcal{P}ic(\mathcal{C})_{\downarrow A})$ for any $A \in \operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{C})$.

Corollary (Camarena-Barthel 2018)

Let $f : X \to \mathcal{P}ic(\mathcal{C})$ be an \mathbb{E}_k -map and $A \in \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})$. The \mathbb{E}_k -algebra structure of Mf is characterized by the following universal property: the space $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})}(Mf, A)$ is equivalent to the space of \mathbb{E}_k -lifts of f indicated below:

Generalized orientation theory

For the remainder of slides let \mathcal{C}^{\otimes} be a **presentably stable symmetric monoidal** ∞ -category and $R \to A$ be a morphism in $\operatorname{Alg}_{\mathbb{E}_{k+1}}(\mathcal{C})$ where $1 \le k \le \infty$.

Definition (Generalized orientation)

- By HA 5.1.4, the ∞ -category $\operatorname{RMod}_R(\mathcal{C})$ of (right) modules over R is an \mathbb{E}_k -monoidal ∞ -category. We denote $\mathcal{P}ic(R)$ as the $\mathcal{P}ic(\operatorname{RMod}_R(\mathcal{C}))$.
- Let B(R, A) be the full 𝔼_k-subgroupoid of $\mathcal{P}ic(R)_{\downarrow A}$ consisting of morphisms of R-modules $h: M \to A$ such that the adjoint $h^{\dagger}: A \otimes_R M \to A$ is an equivalence in $\operatorname{RMod}_A(\mathcal{C})$.
- We define the space of \mathbb{E}_k *A*-orientations of an \mathbb{E}_k -map $f: X \to \mathcal{P}ic(R)$ as the space $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})/\mathcal{P}ic(R)}(X, B(R, A))$ of \mathbb{E}_k -lifts of f indicated below:

Proposition (Camarena-Barthel 2018)

If X is a group-like \mathbb{E}_k -space, then for any \mathbb{E}_k -map $X \to \mathcal{P}ic(R)_{\downarrow A}$ we have the factorization:

Remark

Note that this proposition does not necessarily hold if we do not assume \mathcal{C} is stable.

So in this group-like X case, any \mathbb{E}_k -map $Mf \to A$ is an \mathbb{E}_k A-orientation.

Proposition (Camarena-Barthel 2018)

The following diagram is a pullback diagram of \mathbb{E}_k -spaces, where B(A, A) is a contractible \mathbb{E}_k -space.

$$B(R, A) \longrightarrow B(A, A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{P}ic(R) \xrightarrow{A \otimes_R(-)} \mathcal{P}ic(A)$$

Corollary

Let $f: X \to \mathcal{P}ic(R)$ be an \mathbb{E}_k -map. Then the space of \mathbb{E}_k *A*-orientations for *f* is either empty or equivalent to the space of \mathbb{E}_k *A*-orientations of the constant map $c_R: X \to \mathcal{P}ic(R)$, namely $\Omega \operatorname{Map}_{\mathbb{E}_k}(X, \mathcal{P}ic(A))$.

Generalized orientation theory

A quick proof: Let θ be an \mathbb{E}_k *A*-orientation. We have the following diagram of \mathbb{E}_k -spaces.

So h is null-homotopy by the contractibility of B(A, A). Therefore we have equivalences of spaces

$$\begin{split} \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})/\mathcal{P}ic(R)}(X,B(R,A)) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})/\mathcal{P}ic(A)}(X,B(A,A)) \simeq \\ \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}(\mathcal{S})}(X,\Omega\mathcal{P}ic(A)) \end{split}$$

and $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}^{R}}(Mf, A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}^{A}}(A \otimes_{R} Mf, A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_{k}}^{A}}(A \otimes \Sigma_{+}^{\infty}X, A)$ (Thom isomorphism).

References

In the \mathbb{E}_{∞} -case, we can go further by combing the infinite loop space machine.

Proposition

If $k = \infty$ and X is group-like, then then by $\operatorname{Sp}_{\geq 0} \xrightarrow{\sim} \operatorname{Mon}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S}) \simeq \operatorname{Alg}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S})$ we have $\Omega \operatorname{Map}_{\mathbb{E}_{\infty}}(X, \mathcal{P}ic(A)) \simeq \Omega \operatorname{Map}_{Sp}(x, \operatorname{pic}(A)).$

- Ando, M., Blumberg, A.J., Gepner, D. (2018). Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map. Geometry Topology.
- Mathew, A., Stojanoska, V. (2016). The Picard group of topological modular forms via descent theory. Geometry Topology.
- Antol'in-Camarena, O., Barthel, T. (2018). A simple universal property of Thom ring spectra. Journal of Topology, 12.