Copointedlization and costabilization

Jiacheng Liang

October 22, 2024

Contents

 $\mathbf{2}$

 $\mathbf{2}$

1 Copointedlization

2 A concrete model of $cSp(\mathcal{C})$

Introduction

This note is motivated by the following statement that appeared in the introduction part of [1], which I quote here:

"... let us consider for a moment the central role played by the ∞-category Sp_{fin} of finite spectra in the theory of stable ∞-categories. To begin, Sp_{fin} can be described as the free stable ∞-category generated by a single object $S \in Sp_{fin}$, the sphere spectrum. Furthermore, one can use Sp_{fin} in order to characterize stable ∞-categories inside the ∞category Cat_{fin} of all small ∞-categories with finite colimits (and right exact functors between them). Indeed, Cat_{fin} carries a natural symmetric monoidal structure (see [2, §4.8.1]) whose unit is the the smallest full subcategory of spaces $S_{fin} \subseteq S$ closed under finite colimits. One can then show that Sp_{fin} is an idempotent object in Cat_{fin} in the following sense: the suspension spectrum functor $\Sigma^{\infty}_{+} : S_{fin} \longrightarrow Sp_{fin}$ induces an equivalence $Sp_{fin} \simeq$ $Sp_{fin} \otimes S_{fin} \xrightarrow{\simeq} Sp_{fin} \otimes Sp_{fin}$. The fact that Sp_{fin} is idempotent has a remarkable consequence: it endowed Sp_{fin} with a canonical commutative algebra structure in Cat_{fin} such that the forgetful functor $Mod_{Sp_{fin}}$ (Cat_{fin}) $\longrightarrow Cat_{fin}$ is fully-faithful. From a conceptual point of view, this fact can be described as follows: given an ∞ category with finite colimits C, the structure of being an Sp_{fin} -module is essentially unique once it exists, and can hence be considered as a property. One can then show that this property coincides with being stable. In other words, stable ∞ categories are exactly those $\mathcal{C} \in \operatorname{Cat}_{\operatorname{fin}}$ which admit an action of $\operatorname{Sp}_{\operatorname{fin}}$, in which case the action is essentially unique."

The main goal of this note is to prove the following theorem.

- **Theorem 0.1** (costabilization). 1. The inclusion $\operatorname{Cat}_{st} \subset \operatorname{Cat}_{fin}$ is reflective. And the natural functor $\mathcal{C} \to \operatorname{colim}(\Sigma : \mathcal{C} \to \mathcal{C})$ is a reflection when \mathcal{C} is pointed. We will denote $\operatorname{cSp}(\mathcal{C})$ as $\operatorname{colim}(\Sigma : \mathcal{C} \to \mathcal{C})$.
 - 2. The natural transformation $\mathcal{C} \to \mathcal{C} \otimes \operatorname{Sp_{fin}}$ is also a reflection to the inclusion $\operatorname{Cat}_{st} \subset \operatorname{Cat_{fin}}$, where the tensor product is the bilinear finite cocompletion in $\operatorname{Cat}_{\operatorname{fin}}^{\otimes}$. That implies $\mathcal{S}_{\operatorname{fin}} \to \operatorname{Sp_{fin}}$ is idempotent in $\operatorname{Cat}_{\operatorname{fin}}^{\otimes}$.

1. Copointedlization

Definition 1.1. Let \mathcal{A} be an ∞ -category with finite colimits. We say a functor $\mathcal{A} \to \mathcal{B}$ is a copointedlization if \mathcal{B} is a pointed ∞ -category with finite colimits and $\operatorname{Fun}^{\operatorname{Rex}}(\mathcal{B}, \mathcal{C}) \to$ $\operatorname{Fun}^{\operatorname{Rex}}(\mathcal{A}, \mathcal{C})$ is an equivalence for any pointed ∞ -category \mathcal{C} with finite colimits.

Corollary 1.2. The full subcategory $\operatorname{Cat}_{\operatorname{fin},*} \subset \operatorname{Cat}_{\operatorname{fin}}$ of pointed ∞ -categories with finite colimits is reflective.

2. A concrete model of $cSp(\mathcal{C})$

Definition 2.1. We denote $I = \bigvee_{n=0}^{\infty} \Delta^1 \times \Delta^1$ as the following diagram

Let \mathcal{C} be a pointed ∞ -category with finite colimits. We denote $\operatorname{Fun}^{\Sigma}(I, \mathcal{C}) \subset \operatorname{Fun}(I, \mathcal{C})$ as the full subcategory spanned by those diagrams in which every square is a suspension pushout.

Proposition 2.2. Let C be a pointed ∞ -category with finite colimits. Then the upper left corner evaluation functor $\operatorname{Fun}^{\Sigma}(I, \mathcal{C}) \xrightarrow{\operatorname{ev}_0} \mathcal{C}$ is an equivalence.

Proof. It is not hard to see the evaluation functor $\operatorname{Fun}^{\Sigma}(I_{\leq n}, \mathcal{C}) \xrightarrow{ev_0} \mathcal{C}$ is an equivalence. Then by $\operatorname{Fun}^{\Sigma}(I, \mathcal{C}) = \varprojlim_n \operatorname{Fun}^{\Sigma}(I_{\leq n}, \mathcal{C})$ the result follows. \Box **Lemma 2.3.** (see HTT 5.5.7.11.) Let κ be a regular cardinal. Then $\operatorname{Cat}_{\operatorname{Rex}(\kappa)} \to \operatorname{Cat}_{\infty}$ preserves κ -filtered colimits.

- **Definition 2.4.** 1. Let $F : \mathcal{C} \to \mathcal{D}$ be a right exact functor where \mathcal{C} is a pointed ∞ category with finite colimits and \mathcal{D} is a stable ∞ -category. We say F is a costabilization
 if $\operatorname{Fun}^{\operatorname{Rex}}(\mathcal{D}, \mathcal{E}) \to \operatorname{Fun}^{\operatorname{Rex}}(\mathcal{C}, \mathcal{E})$ is an equivalence for any stable ∞ -category \mathcal{E} .
 - 2. We define $\operatorname{cSp}(\mathcal{C}) = \varinjlim_n(\Sigma : \operatorname{Fun}^{\Sigma}(I, \mathcal{C}) \to \operatorname{Fun}^{\Sigma}(I, \mathcal{C})) \in \operatorname{Cat}_{\operatorname{fin}}$, where the Σ is induced by the evaluation on subdiagram removing first square. By the lemma above the colimit can be formulated in the category of simplicial sets.

Theorem 2.5. Let \mathcal{C} be a pointed ∞ -category with finite colimits. Then the functor $\mathcal{C} \xrightarrow{\sim}$ Fun^{Σ}(I, \mathcal{C}) \rightarrow cSp(\mathcal{C}) is a costabilization.

Proof. We first claim that $\operatorname{cSp}(\mathcal{C})$ is stable. Actually the suspension functor of $\operatorname{cSp}(\mathcal{C})$ has the form $\varinjlim_n \operatorname{Fun}^{\Sigma}(I, \mathcal{C}) \to \varinjlim_{n+1} \operatorname{Fun}^{\Sigma}(I, \mathcal{C})$, which is an equivalence obviously. So $\operatorname{cSp}(\mathcal{C})$ is stable.

Now given a stable ∞ -category \mathcal{E} , we note that $\operatorname{Fun}^{\operatorname{Rex}}(\operatorname{cSp}(\mathcal{C}), \mathcal{E}) = \varprojlim_n \operatorname{Fun}^{\operatorname{Rex}}(\operatorname{Fun}^{\Sigma}(I, \mathcal{C}), \mathcal{E})$. However $\operatorname{Fun}^{\operatorname{Rex}}(\operatorname{Fun}^{\Sigma}(I, \mathcal{C}), \mathcal{E}) \simeq \operatorname{Fun}^{\operatorname{Rex}}(\mathcal{C}, \mathcal{E})$ is stable. And functors in the limit diagram can all be identified as the suspension functor of $\operatorname{Fun}^{\operatorname{Rex}}(\mathcal{C}, \mathcal{E})$, so this is a constant limit and we are done. \Box

Corollary 2.6. The full subcategory $\operatorname{Cat}_{st} \subset \operatorname{Cat}_{\operatorname{fin},*}$ is reflective. Hence $\operatorname{Cat}_{st} \subset \operatorname{Cat}_{\operatorname{fin},*} \subset \operatorname{Cat}_{\operatorname{fin}}$ is reflective by 1.2.

Remark 2.7. Although the copointedlization coincides with the pointedlization, it seems there is no reason that $\operatorname{cSp}(\mathcal{C}) = \varinjlim(\Sigma : \mathcal{C} \to \mathcal{C})$ would be equal to the $\operatorname{Sp}(\mathcal{C}) = \varprojlim(\Sigma : \mathcal{C} \to \mathcal{C})$ appeared in [2] for an arbitrary \mathcal{C} .

References

- Y. Harpaz. Ambidexterity and the universality of finite spans. Proceedings of the London Mathematical Society, 121(5):1121–1170, July 2020. (document)
- [2] J. Lurie. Higher algebra. Sept. 2017. (document), 2.7