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Background

In mathematics, especially in algebraic geometry, complex analysis and algebraic
number theory, Abelian varieties are projective algebraic groups, that is, they are group
varieties.

Abelian variety is one of the most studied objects in algebraic geometry, and it is also
an indispensable tool for studying many other subjects in algebraic geometry and
number theory.

We will see that elliptic curves are exactly Abelian varieties of dim = 1, and that any
Abelian varieties are automatically commutative, smooth and projective.
In addition, we will see that the variety structure on the Abelian variety with a given
base point is unique.

Finally, we will study the separable and inseparable isogeny between Abelian varieties,
which is the most important class of morphisms between Abelian varieties.
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Classification of Étale k-schemes
Let k be a field. Choose a separable algebraic closure ks and write Γk := Gal (ks/k).
Then Γk is a pro-finite group.
By a Γk-set we mean a set Y equipped with a continuous left action of Γk ; the
continuity assumption here means that Stab(y) is an open subgroup of Γk for any
y ∈ Y . If X is a connected étale scheme over k, then X is of the form X = Spec(L),
with L a finite separable field extension of k. An arbitrary étale k-scheme can be
written as a disjoint union of its connected components, and is therefore of the form
X =

⊔
α∈I Spec (Lα), where I is some index set and where k ⊂ Lα is a finite separable

extension of fields.
Theorem
The description of étale k-schemes is a matter of Galois theory. More precisely, if Et/k
denotes the category of étale k-schemes there is an equivalence of categories

Ét/k
X7→X(ks)−→ Γk-sets .
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Connected components of k-schemes of finite type

Theorem (Connected components)

Let X be a scheme of finite type over a field k. Let Y be a finite étale k-scheme.
(i) There is a finite étale k-scheme ω0(X) and a morphism q : X → ω0(X) over k such
that q is universal for k morphisms from X to a finite étale k-scheme. By this we
mean we have an adjoint pair

ω0 : FT/k ⇌ fi ET/k : U

where U is the forgetful functor. And we have ω0 ◦U ∼= Id.
(ii) The morphism q is faithfully flat, and its fibres are precisely the connected
components of X .

7 / 40



Group schemes

Definition
(i) Let S be a scheme. A group scheme over S , or an S-group scheme, is an

S-scheme π : G → S together with S-morphisms m : G ×S G → G (group law,
or multiplication), i : G → G (inverse), and e : S → G (identity section), such
that the following identities of morphisms hold:

m ◦ (m × idG) = m ◦ (idG ×m) : G ×S G ×S G → G
m ◦ (e × idG) = j1 : S ×S G → G
m ◦ (idG × e) = j2 : G ×S S → G

e ◦ π = m ◦ (idG × i) ◦∆G/S = m ◦ (i × idG) ◦∆G/S : G → G,

where j1 : S ×S G ∼−→ G and j2 : G ×S S ∼−→ G are the canonical isomorphisms.
(ii) A group scheme G over S is said to be commutative if, writing

s : G ×S G → G ×S G for the isomorphism switching the two factors, we have
the identity m = m ◦ s : G ×S G → G.
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Morphisms of group schemes

Definition
Let (π1 : G1 → S ,m1, i1, e1) and (π2 : G2 → S ,m2, i2, e2) be two group schemes over
S . A homomorphism of S-group schemes from G1 to G2 is a morphism of schemes
f : G1 → G2 over S such that f ◦m1 = m2 ◦ (f × f ) : G1 ×S G1 → G2. (This
condition implies that f ◦ e1 = e2 and f ◦ i1 = i2 ◦ f .)

Given an S-group scheme G and an integer n, we define [n] = [n]G : G → G to be the
morphism which on sections - using multiplicative notation for the group law-is given
by g 7→ gn . If n ⩾ 1 it factors as

[n] =
(

G
∆n

G/S−→ Gn
S

m(n)

−→ G
)
,

where m(n) is the “iterated multiplication map", given on sections by
(g1, . . . , gn) 7→ g1 · · · gn . For commutative group schemes [n] is a group morphism
usually called “multiplication by n ".
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Quotients of algebraic groups

Definition (Algebraic groups)
Let k be a field. An (locally) algebraic group is s a group scheme over k which is of
(locally) finite type over k.

Theorem
The category Ck of algebraic groups over a field k is an abelian category.

The theorem above can make us easily construct new algebraic groups from given
algebraic groups.

Corollary (Étale-local decomposition of algebraic groups)
Let G ∈ Ck . Then we have an exact sequence in Ck .

0 −→ G0 −→ G −→ ω0(G) −→ 0

If k is perfect and G is finite over k then this sequence naturally splits, i.e. we have a
homomorphic section G ← ω0(G) and natural G ∼= G0 × ω0(G).
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The group structure on elliptic curves
We can prove that any elliptic curve admits a natural (unique) structure of group
variety by a technical stuff called relative effective Cartier divisors.
Definition
We define an elliptic curve over a field k to be a pair (C , e) where C is a smooth
proper and geometrically integral curve over k of genus 1 (i.e. dimkH 1(C ,OC ) = 1)
with e ∈ C (k) a rational point on C .

Theorem (Main)

Let (C , e) be an elliptic curve over a field k, then Div+,1
C/k(T )→ Pic1C/k(T ) is naturally

isomorphic for any k-scheme T , where Div+,1
C/k(−) is representable by C itself.

Corollary
Let (C , e) be an elliptic curve over a field k, then Pic0C/k(−) ∼= Pic1C/k(−) is a functor
into Abel representable by C with L(∆)⊗ π∗

1L(−e) on C ×k C , and hence induces a
natural commutative group k-scheme structure on C with the zero map e. 14 / 40
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Abelian varieties

Definition
An abelian variety (X ,m, i, e) is a group scheme over k which is a proper,
geometrically integral variety over k. (Notice that we never said the group structure on
an abelian variety is commutative! This will be a nontrivial theorem that we will prove.)

We have seen any elliptic curve over k is an abelian variety of dim 1 in the definition.
Actually, the converse is true too.
Proposition
Any abelian variety C of dim 1 over k is an elliptic curve.

Note that we have proved that the category Ck of commutative algebraic groups over
a field k is an abelian category. Actually, we will see any quotient of an abelian variety
is still an abelian variety in the following proposition.
Proposition
Let f : X → Y be an epimorphism (i.e. fppf homomorphism) in Ck . If X is an abelian
variety, then so is Y .
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Smoothness of abelian varieties

Proposition (Smoothness)
Let G be a (locally) algebraic group over a field k, then
(i) The identity component G0 is an open and closed subgroup scheme of G which is
geometrically irreducible.
(ii) The following properties are equivalent:
(a) G ×k K is reduced for some perfect field K containing k;
(b) G is smooth over k;
(iii) Every connected component of G is irreducible and of finite type over k.

Corollary
Particularly, any abelian variety over a field k is smooth over k.
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Rigidity of abelian varieties

Lemma (Rigidity lemma)

Let k be a field, and let X be a geometrically reduced, geometrically connected proper
k-scheme such that X(k) 6= ∅. Let Y be an integral k-scheme, and let Z be a
separated k-scheme. Let f : X ×Y → Z be a morphism such that for some
y ∈ Y (k), f|X×{y} factors through a k-valued point z ∈ Z (k). Then f factors through
the projection p2 : X ×Y → Y .

Corollary

Let X and Y be abelian varieties and let f : X → Y be a k-morphism. Then f is the
composition f = tf (eX ) ◦ h of a homomorphism h : X → Y and a translation tf (eX )

over f (eX ) on Y .

Particularly, if f preserves the basepoint, then f is a homomorphism.
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Rigidity of abelian varieties

Corollary
(i) If X is a geometrically integral proper variety over a field k and e ∈ X(k) then

there is at most one structure of an abelian variety on X for which e is the
identity element.

(ii) If (X ,m, i, e) is an abelian variety then the group structure on X is commutative,
i.e., m ◦ τ = m : X × X → X , where τ : X ×X → X × X is the morphism
switching the two factors. In particular, for every k-scheme T the group X(T ) is
abelian.

Theorem (Rigidity of line bundles)

Let X and Y be proper and geometrically integral varieties over k and let Z be a
connected, locally noetherian k-scheme. Consider points x ∈ X(k) and y ∈ Y (k), and
let z ∈ Z (k) be a point of Z . If L is a line bundle on X × Y × Z whose restriction to
{x} × Y × Z , to X × {y} × Z and to X × Y × {z} is trivial then L is trivial.
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Line bundles of abelian varieties

Theorem (Theorem of the Cube)

Let X be an abelian variety over k. Let L be a line bundle on X . Then the line bundle

Θ(L) :=
⊗

I⊂{1,2,3}

p∗
I L⊗(−1)1+#I

=p∗
123L ⊗ p∗

12L−1 ⊗ p∗
13L−1 ⊗ p∗

23L−1 ⊗ p∗
1L ⊗ p∗

2L ⊗ p∗
3L

on X × X × X is trivial.

Corollary

For every line bundle L on an abelian variety X and every n ∈ Z we have

[n]∗L ∼= Ln(n+1)/2 ⊗ [−1]∗Ln(n−1)/2.

25 / 40



Line bundles of abelian varieties

Theorem (Theorem of the Cube)

Let X be an abelian variety over k. Let L be a line bundle on X . Then the line bundle

Θ(L) :=
⊗

I⊂{1,2,3}

p∗
I L⊗(−1)1+#I

=p∗
123L ⊗ p∗

12L−1 ⊗ p∗
13L−1 ⊗ p∗

23L−1 ⊗ p∗
1L ⊗ p∗

2L ⊗ p∗
3L

on X × X × X is trivial.

Corollary

For every line bundle L on an abelian variety X and every n ∈ Z we have

[n]∗L ∼= Ln(n+1)/2 ⊗ [−1]∗Ln(n−1)/2.

26 / 40



Isogenies between abelian varieties

Definition

Let f : X → Y be a homomorphism of abelian varieties. A homomorphism f : X → Y
of abelian varieties is called an isogeny if f satisfies following equivalent conditions:

(a) f is surjective and dim(X) = dim(Y );
(b) Ker(f ) is a finite group scheme and dim(X) = dim(Y );
(c) f is a finite, flat and surjective morphism.

Definition
A homomorphism f : X → Y of abelian varieties is called an isogeny if f satisfies the
three equivalent conditions (a), (b) and (c) above. The degree of an isogeny f is the
degree of the function field extension deg(f ) = [K (X) : K (Y )]. We can prove a
formula deg(f ) = rankOY (f∗OX ) = rank(Ker(f )).
We call an isogeny to be separable (resp. inseparable) if and only if K (X)|K (Y ) is a
separable (resp. inseparable) extension.
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Isogenies between abelian varieties
An important example of an isogeny is the multiplication [n]X : X → X by an integer
n 6= 0. We write X [n] := Ker ([n]X ) ⊂ X .

Theorem
For n 6= 0, the morphism [n]X is an isogeny. If g = dim(X), we have
deg ([n]X ) = n2g. If (char(k),n) = 1 then [n]X is separable.

Proposition
If X is an abelian variety over an algebraically closed field k then X(k) is a divisible
group. That is, for every P ∈ X(k) and n ∈ Z\{0} there exists a point Q ∈ X(k) with
n ·Q = P.

Corollary
If (char(k),n) = 1 then X [n] (ks) = X [n](k̄) ∼= (Z/nZ)2g.
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p-rank of an abelian variety of char(p)>0
Now we consider abelian varieties over a field of characteristic p > 0.

Theorem
If X is an abelian variety of dimension g over field k of characteristic p, then there is a
unique integer 0 ≤ i ≤ g, i = f (X) called the p-rank of X , such that

X [pm ] (k̄) = (Z/pmZ)i .

Proposition
If h : X → Y is an isogeny of abelian varieties over a field k, then f (X) = f (Y ).

Remark
The p-rank does not depend on the ground field. More precisely, if k ⊂ K is a field
extension and X is an abelian variety over k then f (X) = f (XK ).
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Formal completion of pointed k-schemes

Definition
For a k-scheme X with a rational point e ∈ X(k). The formal completion X̂ of X
“along" e is defined to be the complete linearly topological ring Spf(ÔX ,e). This

induces a functor Sch∗
k

(̂−)−−→ k-FRingsop where the left one is the category of pointed
k-schemes.

Theorem

The functor (̂−) preserves finite limits. Particularly, it preserves finite products and
hence preserves (commutative) Monoid objects, (commutative) Group objects. So it
takes group k-schemes to formal group k-schemes.

This theorem tells us an interesting basic fact: a formal group scheme can be obtained
naturally by formal completion of a smooth group variety.
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Definition
An elliptic curve X is said to be ordinary if f (X) = 1 and supersingular if f (X) = 0.

We end with following beautiful theorems of the correspondence p-rank of elliptic
curves and the height of its formal completion.

Theorem
Let C be an elliptic curve over a field k. Then ht(Ĉ ) = 1 or ht(Ĉ ) = 2.

Theorem
Let C be an elliptic curve over a field k. Then following conditions are equivalent
(i) [p]C is a purely inseparable isogeny;
(ii) C is supersingular;
(iii) ht(Ĉ ) = 2.
Particularly, by the last theorem we have ht(Ĉ ) + f (C ) = 2.
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Theorem
Let C be an elliptic curve over a field k. Then following conditions are equivalent
(i) [p]C is a purely inseparable isogeny;
(ii) C is supersingular;
(iii) ht(Ĉ ) = 2.
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THANK YOU！
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