The Right Adjunction of Thom spectrum Functor

Jiacheng Liang

0.1 Notation

Let G be a group over the ∞ orthogonal group $O(\infty)$ with $e \in G$ a nondegenerated basepoint, (so G is automatically a group $\mathscr{I} - FCP$), \mathcal{U}/B be the (nonbased) CGWH category over a space B, $\mathcal{U}[H]$ be the category of spaces with a right action for a (CGWH) topological group H, S be the category of May's (Ω -)spectra in a fixed universe. And Thom spectrum functor is denoted by $M : \mathcal{U}/BG \to S$.

0.2 **Proposition**

Given a map $(X \to BG) \in \mathcal{U}/BG$ and $E \in \mathcal{S}$, then

 $\operatorname{Hom}_{\mathcal{S}}(MX, E) = \operatorname{Hom}_{\mathcal{U}[G]}(p^*X, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BG}(X, EG \times_G \Omega^{\infty}E)$

where p is the map $EG \to BG$. Since $\Omega^{\infty}E = E_0 = \Omega^V E_V = F(S^V, E_V)$ for any V in the universe, $\Omega^{\infty}E$ admits a right G(V)-action by the left action on S^V , and this action is coherent for all V, so we get a right G-action on $\Omega^{\infty}E$.

proof:

First we have

$$\operatorname{Hom}_{\mathcal{S}}(MX, E) = \operatorname{Hom}_{\mathcal{S}}(\operatorname{colim}_{V} MX_{V}, E) = \operatorname{lim}_{V} \operatorname{Hom}_{\mathcal{S}}(MX_{V}, E)$$

Second we define EX_V and Z(V) by pullback diagrams,

$$EX_V \longrightarrow B(*, G(V), G(V)) \quad Z_V \longrightarrow B(*, G(V), G)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_V \longrightarrow B(*, G(V), *) \qquad X_V \longrightarrow B(*, G(V), *)$$

then

 $\lim_{V} \operatorname{Hom}_{\mathcal{S}}(MX_{V}, E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}}(EX_{V+} \wedge_{G(V)} S^{V}, E_{V}) = \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}[G_{V+}]}(EX_{V+}, \Omega^{V}E_{V})$

 $= \lim_{V} \operatorname{Hom}_{\mathcal{U}[G_{V}]}(EX_{V}, \Omega^{\infty}E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[G]}(EX_{V} \times_{G_{V}} G, \Omega^{\infty}E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[G]}(Z_{V}, \Omega^{\infty}E) = \operatorname{Hom}_{G}(p^{*}X, \Omega^{\infty}E)$ Since equivariant maps from a principle *G*-bundle to a *G*-space is equivalent to following sections.

$$\operatorname{Hom}_{G}(p^{*}X, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/X}(X, p^{*}X \times_{G} \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BG}(X, EG \times_{G} \Omega^{\infty}E)$$

Remark: This process doesn't work in the prespectrum level, because the right G-action on $\Omega^{\infty} E$ only appears for a spectrum E.